--- a/src/propagation/model/propagation-loss-model.cc Thu Feb 20 22:00:09 2014 -0800
+++ b/src/propagation/model/propagation-loss-model.cc Fri Feb 21 13:43:17 2014 +0100
@@ -161,11 +161,11 @@
DoubleValue (1.0),
MakeDoubleAccessor (&FriisPropagationLossModel::m_systemLoss),
MakeDoubleChecker<double> ())
- .AddAttribute ("MinDistance",
- "The distance under which the propagation model refuses to give results (m)",
- DoubleValue (0.5),
- MakeDoubleAccessor (&FriisPropagationLossModel::SetMinDistance,
- &FriisPropagationLossModel::GetMinDistance),
+ .AddAttribute ("MinLoss",
+ "The minimum value (dB) of the total loss, used at short ranges. Note: ",
+ DoubleValue (0.0),
+ MakeDoubleAccessor (&FriisPropagationLossModel::SetMinLoss,
+ &FriisPropagationLossModel::GetMinLoss),
MakeDoubleChecker<double> ())
;
return tid;
@@ -185,14 +185,14 @@
return m_systemLoss;
}
void
-FriisPropagationLossModel::SetMinDistance (double minDistance)
+FriisPropagationLossModel::SetMinLoss (double minLoss)
{
- m_minDistance = minDistance;
+ m_minLoss = minLoss;
}
double
-FriisPropagationLossModel::GetMinDistance (void) const
+FriisPropagationLossModel::GetMinLoss (void) const
{
- return m_minDistance;
+ return m_minLoss;
}
void
@@ -258,15 +258,19 @@
* lambda: wavelength (m)
*/
double distance = a->GetDistanceFrom (b);
- if (distance <= m_minDistance)
+ if (distance < 3*m_lambda)
{
- return txPowerDbm;
+ NS_LOG_WARN ("distance not within the far field region => inaccurate propagation loss value");
+ }
+ if (distance <= 0)
+ {
+ return txPowerDbm - m_minLoss;
}
double numerator = m_lambda * m_lambda;
double denominator = 16 * PI * PI * distance * distance * m_systemLoss;
- double pr = 10 * std::log10 (numerator / denominator);
- NS_LOG_DEBUG ("distance="<<distance<<"m, attenuation coefficient="<<pr<<"dB");
- return txPowerDbm + pr;
+ double lossDb = -10 * log10 (numerator / denominator);
+ NS_LOG_DEBUG ("distance=" << distance<< "m, loss=" << lossDb <<"dB");
+ return txPowerDbm - std::max (lossDb, m_minLoss);
}
int64_t
--- a/src/propagation/model/propagation-loss-model.h Thu Feb 20 22:00:09 2014 -0800
+++ b/src/propagation/model/propagation-loss-model.h Fri Feb 21 13:43:17 2014 +0100
@@ -166,16 +166,53 @@
* - \f$ \lambda \f$ : wavelength (m)
* - \f$ d \f$ : distance (m)
* - \f$ L \f$ : system loss (unit-less)
- *
- *
- * This model is invalid for small distance values.
- * The current implementation returns the txpower as the rxpower
- * for any distance smaller than MinDistance.
*
* In the implementation, \f$ \lambda \f$ is calculated as
* \f$ \frac{C}{f} \f$, where \f$ C = 299792458\f$ m/s is the speed of light in
* vacuum, and \f$ f \f$ is the frequency in Hz which can be configured by
* the user via the Frequency attribute.
+ *
+ * The Friis model is valid only for propagation in free space within
+ * the so-called far field region, which can be considered
+ * approximately as the region for \f$ d > 3 \lambda \f$.
+ * The model will still return a value for \f$ d < 3 \lambda \f$, as
+ * doing so (rather than triggering a fatal error) is practical for
+ * many simulation scenarios. However, we stress that the values
+ * obtained in such conditions shall not be considered realistic.
+ *
+ * Related with this issue, we note that the Friis formula is
+ * undefined for \f$ d = 0 \f$, and results in
+ * \f$ P_r > P_t \f$ for \f$ d < \lambda / 2 \sqrt{\pi} \f$.
+ * Both these conditions occur outside of the far field region, so in
+ * principle the Friis model shall not be used in these conditions.
+ * In practice, however, Friis is often used in scenarios where accurate
+ * propagation modeling is not deemed important, and values of \f$ d =
+ * 0 \f$ can occur. To allow practical use of the model in such
+ * scenarios, we have to 1) return some value for \f$ d = 0 \f$, and
+ * 2) avoid large discontinuities in propagation loss values (which
+ * could lead to artifacts such as bogus capture effects which are
+ * much worse than inaccurate propagation loss values). The two issues
+ * are conflicting, as, according to the Friis formula,
+ * \f$\lim_{d \to 0 } P_r = +\infty \f$;
+ * so if, for \f$ d = 0 \f$, we use a fixed loss value, we end up with an infinitely large
+ * discontinuity, which as we discussed can cause undesireable
+ * simulation artifacts.
+ *
+ * To avoid these artifact, this implmentation of the Friis model
+ * provides an attribute called MinLoss which allows to specify the
+ * minimum total loss (in dB) returned by the model. This is used in
+ * such a way that
+ * \f$ P_r \f$ continuously increases for \f$ d \to 0 \f$, until
+ * MinLoss is reached, and then stay constant; this allow to
+ * return a value for \f$ d = 0 \f$ and at the same time avoid
+ * discontinuities. The model won't be much realistic, but at least
+ * the simulation artifacts discussed before are avoided. The default value of
+ * MinLoss is 0 dB, which means that by default the model will return
+ * \f$ P_r = P_t \f$ for \f$ d <= \lambda / 2 \sqrt{\pi} \f$. We note
+ * that this value of \f$ d \f$ is outside of the far field
+ * region, hence the validity of the model in the far field region is
+ * not affected.
+ *
*/
class FriisPropagationLossModel : public PropagationLossModel
{
@@ -197,17 +234,17 @@
void SetSystemLoss (double systemLoss);
/**
- * \param minDistance the minimum distance
+ * \param minLoss the minimum loss (dB)
*
- * Below this distance, the txpower is returned
- * unmodified as the rxpower.
+ * no matter how short the distance, the total propagation loss (in
+ * dB) will always be greater or equal than this value
*/
- void SetMinDistance (double minDistance);
+ void SetMinLoss (double minLoss);
/**
- * \returns the minimum distance.
+ * \return the minimum loss.
*/
- double GetMinDistance (void) const;
+ double GetMinLoss (void) const;
/**
* \returns the current frequency (Hz)
@@ -232,7 +269,7 @@
double m_lambda;
double m_frequency;
double m_systemLoss;
- double m_minDistance;
+ double m_minLoss;
};
/**