/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2006 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
*/
#include "test.h"
#include "abort.h"
#include "assert.h"
#include "log.h"
#include <cmath>
#include <iostream>
#include "int64x64-cairo.h"
// Include directly to allow optimizations within this compilation unit.
extern "C" {
#include "cairo-wideint.c"
}
/**
* \file
* \ingroup highprec
* Implementation of the ns3::int64x64_t type using the Cairo implementation.
*/
namespace ns3 {
// Note: Logging in this file is largely avoided due to the
// number of calls that are made to these functions and the possibility
// of causing recursions leading to stack overflow
NS_LOG_COMPONENT_DEFINE ("int64x64-cairo");
/**
* \ingroup highprec
* Compute the sign of the result of multiplying or dividing
* Q64.64 fixed precision operands.
*
* \param [in] sa The signed value of the first operand.
* \param [in] sb The signed value of the second operand.
* \param [out] ua The unsigned magnitude of the first operand.
* \param [out] ub The unsigned magnitude of the second operand.
* \returns True if the result will be negative.
*/
static inline
bool
output_sign (const cairo_int128_t sa,
const cairo_int128_t sb,
cairo_uint128_t & ua,
cairo_uint128_t & ub)
{
bool negA = _cairo_int128_negative (sa);
bool negB = _cairo_int128_negative (sb);
ua = _cairo_int128_to_uint128 (sa);
ub = _cairo_int128_to_uint128 (sb);
ua = negA ? _cairo_uint128_negate (ua) : ua;
ub = negB ? _cairo_uint128_negate (ub) : ub;
return (negA && !negB) || (!negA && negB);
}
void
int64x64_t::Mul (const int64x64_t & o)
{
cairo_uint128_t a, b;
bool sign = output_sign (_v, o._v, a, b);
cairo_uint128_t result = Umul (a, b);
_v = sign ? _cairo_uint128_negate (result) : result;
}
cairo_uint128_t
int64x64_t::Umul (const cairo_uint128_t a, const cairo_uint128_t b)
{
cairo_uint128_t result;
cairo_uint128_t hiPart, loPart, midPart;
cairo_uint128_t res1, res2;
// Multiplying (a.h 2^64 + a.l) x (b.h 2^64 + b.l) =
// 2^128 a.h b.h + 2^64*(a.h b.l+b.h a.l) + a.l b.l
// get the low part a.l b.l
// multiply the fractional part
loPart = _cairo_uint64x64_128_mul (a.lo, b.lo);
// compute the middle part 2^64*(a.h b.l+b.h a.l)
midPart = _cairo_uint128_add (_cairo_uint64x64_128_mul (a.lo, b.hi),
_cairo_uint64x64_128_mul (a.hi, b.lo));
// compute the high part 2^128 a.h b.h
hiPart = _cairo_uint64x64_128_mul (a.hi, b.hi);
// if the high part is not zero, put a warning
NS_ABORT_MSG_IF (hiPart.hi != 0,
"High precision 128 bits multiplication error: multiplication overflow.");
// Adding 64-bit terms to get 128-bit results, with carries
res1 = _cairo_uint64_to_uint128 (loPart.hi);
res2 = _cairo_uint64_to_uint128 (midPart.lo);
result = _cairo_uint128_add (res1, res2);
res1 = _cairo_uint64_to_uint128 (midPart.hi);
res2 = _cairo_uint64_to_uint128 (hiPart.lo);
res1 = _cairo_uint128_add (res1, res2);
res1 = _cairo_uint128_lsl (res1, 64);
result = _cairo_uint128_add (result, res1);
return result;
}
void
int64x64_t::Div (const int64x64_t & o)
{
cairo_uint128_t a, b;
bool sign = output_sign (_v, o._v, a, b);
cairo_uint128_t result = Udiv (a, b);
_v = sign ? _cairo_uint128_negate (result) : result;
}
cairo_uint128_t
int64x64_t::Udiv (const cairo_uint128_t a, const cairo_uint128_t b)
{
cairo_uint128_t den = b;
cairo_uquorem128_t qr = _cairo_uint128_divrem (a, b);
cairo_uint128_t result = qr.quo;
cairo_uint128_t rem = qr.rem;
// Now, manage the remainder
const uint64_t DIGITS = 64; // Number of fraction digits (bits) we need
const cairo_uint128_t ZERO = _cairo_uint32_to_uint128 ((uint32_t)0);
NS_ASSERT_MSG (_cairo_uint128_lt (rem, den),
"Remainder not less than divisor");
uint64_t digis = 0; // Number of digits we have already
uint64_t shift = 0; // Number we are going to get this round
// Skip trailing zeros in divisor
while ( (shift < DIGITS) && !(den.lo & 0x1))
{
++shift;
den = _cairo_uint128_rsl (den, 1);
}
while ( (digis < DIGITS) && !(_cairo_uint128_eq(rem, ZERO)) )
{
// Skip leading zeros in remainder
while ( (digis + shift < DIGITS) &&
!(rem.hi & HPCAIRO_MASK_HI_BIT) )
{
++shift;
rem = _cairo_int128_lsl (rem, 1);
}
// Cast off denominator bits if:
// Need more digits and
// LSB is zero or
// rem < den
while ( (digis + shift < DIGITS) &&
( !(den.lo & 0x1) || _cairo_uint128_lt (rem, den) ) )
{
++shift;
den = _cairo_uint128_rsl (den, 1);
}
// Do the division
qr = _cairo_uint128_divrem (rem, den);
// Add in the quotient as shift bits of the fraction
result = _cairo_uint128_lsl (result, shift);
result = _cairo_uint128_add (result, qr.quo);
rem = qr.rem;
digis += shift;
shift = 0;
}
// Did we run out of remainder?
if (digis < DIGITS)
{
shift = DIGITS - digis;
result = _cairo_uint128_lsl (result, shift);
}
return result;
}
void
int64x64_t::MulByInvert (const int64x64_t & o)
{
bool sign = _cairo_int128_negative (_v);
cairo_uint128_t a = sign ? _cairo_int128_negate (_v) : _v;
cairo_uint128_t result = UmulByInvert (a, o._v);
_v = sign ? _cairo_int128_negate (result) : result;
}
cairo_uint128_t
int64x64_t::UmulByInvert (const cairo_uint128_t a, const cairo_uint128_t b)
{
cairo_uint128_t result;
cairo_uint128_t hi, mid;
hi = _cairo_uint64x64_128_mul (a.hi, b.hi);
mid = _cairo_uint128_add (_cairo_uint64x64_128_mul (a.hi, b.lo),
_cairo_uint64x64_128_mul (a.lo, b.hi));
mid.lo = mid.hi;
mid.hi = 0;
result = _cairo_uint128_add (hi,mid);
return result;
}
int64x64_t
int64x64_t::Invert (const uint64_t v)
{
NS_ASSERT (v > 1);
cairo_uint128_t a, factor;
a.hi = 1;
a.lo = 0;
factor.hi = 0;
factor.lo = v;
int64x64_t result;
result._v = Udiv (a, factor);
int64x64_t tmp = int64x64_t (v, 0);
tmp.MulByInvert (result);
if (tmp.GetHigh () != 1)
{
cairo_uint128_t one = { 1, 0};
result._v = _cairo_uint128_add (result._v, one);
}
return result;
}
} // namespace ns3