/* -*- Mode: C++; c-file-style: "gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2009 The Boeing Company
* 2014 Universita' degli Studi di Napoli "Federico II"
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
//
// This script configures two nodes on an 802.11b physical layer, with
// 802.11b NICs in adhoc mode. One of the nodes generates on-off traffic
// destined to the other node.
//
// The purpose is to test the energy depletion on the nodes and the
// activation of the callback that puts a node in the sleep state when
// its energy is depleted. Furthermore, this script can be used to test
// the available policies for updating the transmit current based on
// the nominal tx power used to transmit each frame.
//
// There are a number of command-line options available to control
// the default behavior. The list of available command-line options
// can be listed with the following command:
// ./waf --run "wifi-sleep --help"
//
// Note that all ns-3 attributes (not just the ones exposed in the below
// script) can be changed at command line; see the documentation.
//
// This script can also be helpful to put the Wifi layer into verbose
// logging mode; this command will turn on all wifi logging:
//
// ./waf --run "wifi-sleep --verbose=1"
//
// When you are done, you will notice four trace files in your directory:
// two for the remaining energy on each node and two for the state transitions
// of each node.
//
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/mobility-module.h"
#include "ns3/config-store-module.h"
#include "ns3/wifi-module.h"
#include "ns3/internet-module.h"
#include "ns3/applications-module.h"
#include "ns3/energy-module.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <sstream>
using namespace ns3;
NS_LOG_COMPONENT_DEFINE ("WifiSleep");
template <int node>
void RemainingEnergyTrace (double oldValue, double newValue)
{
std::stringstream ss;
ss << "energy_" << node << ".log";
static std::fstream f (ss.str().c_str(), std::ios::out);
f << Simulator::Now().GetSeconds() << " remaining energy=" << newValue << std::endl;
}
template <int node>
void PhyStateTrace (std::string context, Time start, Time duration, enum WifiPhy::State state)
{
std::stringstream ss;
ss << "state_" << node << ".log";
static std::fstream f (ss.str().c_str(), std::ios::out);
f << Simulator::Now().GetSeconds() << " state=" << state << " start=" << start << " duration=" << duration << std::endl;
}
int main (int argc, char *argv[])
{
std::string dataRate = "1Mbps";
uint32_t packetSize = 1000; // bytes
double duration = 10.0; // seconds
double initialEnergy = 7.5; // joule
double voltage = 3.0; // volts
double txPowerStart = 0.0; // dbm
double txPowerEnd = 15.0; // dbm
uint32_t nTxPowerLevels = 16;
uint32_t txPowerLevel = 0;
double idleCurrent = 0.273; // Ampere
double txCurrent = 0.380; // Ampere
bool verbose = false;
CommandLine cmd;
cmd.AddValue ("dataRate", "Data rate", dataRate);
cmd.AddValue ("packetSize", "size of application packet sent", packetSize);
cmd.AddValue ("duration", "duration (seconds) of the experiment", duration);
cmd.AddValue ("initialEnergy", "Initial Energy (Joule) of each node", initialEnergy);
cmd.AddValue ("voltage", "Supply voltage (Joule)", voltage);
cmd.AddValue ("txPowerStart", "Minimum available transmission level (dbm)", txPowerStart);
cmd.AddValue ("txPowerEnd", "Maximum available transmission level (dbm)", txPowerEnd);
cmd.AddValue ("nTxPowerLevels", "Number of transmission power levels available between txPowerStart and txPowerEnd included", nTxPowerLevels);
cmd.AddValue ("txPowerLevel", "Transmission power level", txPowerLevel);
cmd.AddValue ("idleCurrent", "The radio Idle current in Ampere", idleCurrent);
cmd.AddValue ("txCurrent", "The radio Tx current in Ampere", txCurrent);
cmd.AddValue ("verbose", "turn on all WifiNetDevice log components", verbose);
cmd.Parse (argc, argv);
NodeContainer c;
c.Create (2);
// The below set of helpers will help us to put together the wifi NICs we want
WifiHelper wifi;
if (verbose)
{
wifi.EnableLogComponents (); // Turn on all Wifi logging
}
wifi.SetStandard (WIFI_PHY_STANDARD_80211b);
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
// ns-3 supports RadioTap and Prism tracing extensions for 802.11b
wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO);
wifiPhy.Set ("TxPowerStart", DoubleValue (txPowerStart));
wifiPhy.Set ("TxPowerEnd", DoubleValue (txPowerEnd));
wifiPhy.Set ("TxPowerLevels", UintegerValue (nTxPowerLevels));
YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
// Add a non-QoS upper mac, and set the selected tx power level
NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();
wifi.SetRemoteStationManager ("ns3::ArfWifiManager", "DefaultTxPowerLevel", UintegerValue (txPowerLevel));
// Set it to adhoc mode
wifiMac.SetType ("ns3::AdhocWifiMac");
NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, c);
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (10.0, 0.0, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility.Install (c);
InternetStackHelper internet;
internet.Install (c);
Ipv4AddressHelper ipv4;
NS_LOG_INFO ("Assign IP Addresses.");
ipv4.SetBase ("10.1.1.0", "255.255.255.0");
Ipv4InterfaceContainer i = ipv4.Assign (devices);
ApplicationContainer apps;
std::string transportProto = std::string("ns3::UdpSocketFactory");
OnOffHelper onOff(transportProto, InetSocketAddress (Ipv4Address ("10.1.1.2"), 9000));
onOff.SetAttribute ("DataRate", DataRateValue (DataRate (dataRate)));
onOff.SetAttribute ("PacketSize", UintegerValue (packetSize));
onOff.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0.001]"));
apps = onOff.Install (c.Get (0));
apps.Start (Seconds (0.01));
apps.Stop (Seconds (duration));
// Create a packet sink to receive these packets
PacketSinkHelper sink (transportProto, InetSocketAddress (Ipv4Address::GetAny (), 9001));
apps = sink.Install (c.Get (1));
apps.Start (Seconds (0.01));
apps.Stop (Seconds (duration));
// Energy sources
EnergySourceContainer eSources;
BasicEnergySourceHelper basicSourceHelper;
WifiRadioEnergyModelHelper radioEnergyHelper;
basicSourceHelper.Set ("BasicEnergySourceInitialEnergyJ", DoubleValue (initialEnergy));
basicSourceHelper.Set ("BasicEnergySupplyVoltageV", DoubleValue (voltage));
radioEnergyHelper.Set ("IdleCurrentA", DoubleValue (idleCurrent));
radioEnergyHelper.Set ("TxCurrentA", DoubleValue (txCurrent));
// compute the efficiency of the power amplifier (eta) assuming that the provided value for tx current
// corresponds to the minimum tx power level
double eta = WifiTxCurrentModel::DbmToW (txPowerStart) / ((txCurrent - idleCurrent) * voltage);
radioEnergyHelper.SetTxCurrentModel ("ns3::LinearWifiTxCurrentModel",
"Voltage", DoubleValue (voltage),
"IdleCurrent", DoubleValue (idleCurrent),
"Eta", DoubleValue (eta));
// install an energy source on each node
for (NodeContainer::Iterator n = c.Begin(); n != c.End(); n++)
{
eSources.Add (basicSourceHelper.Install (*n));
Ptr<WifiNetDevice> wnd;
for (uint32_t i = 0; i < (*n)->GetNDevices (); ++i)
{
wnd = (*n)->GetDevice (i)->GetObject<WifiNetDevice> ();
// if it is a WifiNetDevice
if (wnd != 0)
{
// this device draws power from the last created energy source
radioEnergyHelper.Install (wnd, eSources.Get (eSources.GetN()-1));
}
}
}
// Tracing
eSources.Get (0)->TraceConnectWithoutContext ("RemainingEnergy", MakeCallback(&RemainingEnergyTrace<0>));
eSources.Get (1)->TraceConnectWithoutContext ("RemainingEnergy", MakeCallback(&RemainingEnergyTrace<1>));
Config::Connect ("/NodeList/0/DeviceList/*/Phy/State/State", MakeCallback (&PhyStateTrace<0>));
Config::Connect ("/NodeList/1/DeviceList/*/Phy/State/State", MakeCallback (&PhyStateTrace<1>));
// wifiPhy.EnablePcap ("wifi-sleep", devices);
Simulator::Stop (Seconds(duration+1));
Simulator::Run ();
Simulator::Destroy ();
return 0;
}