src/lte/model/pf-ff-mac-scheduler.cc
author Marco Miozzo <marco.miozzo@cttc.es>
Tue, 10 May 2011 16:52:43 +0200
changeset 8035 d2e70680881a
parent 7983 b91d5a39aabc
child 8047 3741b99462cd
permissions -rw-r--r--
LenaTestPfFfMacSchedulerSuite works with distance 0

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Author: Marco Miozzo <marco.miozzo@cttc.es>
 */

#include <ns3/log.h>
#include <ns3/pointer.h>

#include <ns3/simulator.h>
#include <ns3/lte-amc.h>
#include <ns3/pf-ff-mac-scheduler.h>

NS_LOG_COMPONENT_DEFINE ("PfFfMacScheduler");

namespace ns3 {

int PfType0AllocationRbg[4] = {
  10,       // RGB size 1
  26,       // RGB size 2
  63,       // RGB size 3
  110       // RGB size 4
};  // see table 7.1.6.1-1 of 36.213


NS_OBJECT_ENSURE_REGISTERED (PfFfMacScheduler);



class PfSchedulerMemberCschedSapProvider : public FfMacCschedSapProvider
{
public:
  PfSchedulerMemberCschedSapProvider (PfFfMacScheduler* scheduler);

  // inherited from FfMacCschedSapProvider
  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);

private:
  PfSchedulerMemberCschedSapProvider ();
  PfFfMacScheduler* m_scheduler;
};

PfSchedulerMemberCschedSapProvider::PfSchedulerMemberCschedSapProvider ()
{
}

PfSchedulerMemberCschedSapProvider::PfSchedulerMemberCschedSapProvider (PfFfMacScheduler* scheduler) : m_scheduler (scheduler)
{
}


void
PfSchedulerMemberCschedSapProvider::CschedCellConfigReq (const struct CschedCellConfigReqParameters& params)
{
  m_scheduler->DoCschedCellConfigReq (params);
}

void
PfSchedulerMemberCschedSapProvider::CschedUeConfigReq (const struct CschedUeConfigReqParameters& params)
{
  m_scheduler->DoCschedUeConfigReq (params);
}


void
PfSchedulerMemberCschedSapProvider::CschedLcConfigReq (const struct CschedLcConfigReqParameters& params)
{
  m_scheduler->DoCschedLcConfigReq (params);
}

void
PfSchedulerMemberCschedSapProvider::CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params)
{
  m_scheduler->DoCschedLcReleaseReq (params);
}

void
PfSchedulerMemberCschedSapProvider::CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params)
{
  m_scheduler->DoCschedUeReleaseReq (params);
}




class PfSchedulerMemberSchedSapProvider : public FfMacSchedSapProvider
{
public:
  PfSchedulerMemberSchedSapProvider (PfFfMacScheduler* scheduler);

  // inherited from FfMacSchedSapProvider
  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);


private:
  PfSchedulerMemberSchedSapProvider ();
  PfFfMacScheduler* m_scheduler;
};



PfSchedulerMemberSchedSapProvider::PfSchedulerMemberSchedSapProvider ()
{
}


PfSchedulerMemberSchedSapProvider::PfSchedulerMemberSchedSapProvider (PfFfMacScheduler* scheduler)
  : m_scheduler (scheduler)
{
}

void
PfSchedulerMemberSchedSapProvider::SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params)
{
  m_scheduler->DoSchedDlRlcBufferReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params)
{
  m_scheduler->DoSchedDlPagingBufferReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params)
{
  m_scheduler->DoSchedDlMacBufferReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params)
{
  m_scheduler->DoSchedDlTriggerReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params)
{
  m_scheduler->DoSchedDlRachInfoReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params)
{
  m_scheduler->DoSchedDlCqiInfoReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params)
{
  m_scheduler->DoSchedUlTriggerReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params)
{
  m_scheduler->DoSchedUlNoiseInterferenceReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params)
{
  m_scheduler->DoSchedUlSrInfoReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params)
{
  m_scheduler->DoSchedUlMacCtrlInfoReq (params);
}

void
PfSchedulerMemberSchedSapProvider::SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params)
{
  m_scheduler->DoSchedUlCqiInfoReq (params);
}





PfFfMacScheduler::PfFfMacScheduler ()
  :   m_cschedSapUser (0),
    m_schedSapUser (0),
    m_timeWindow (10.0),
    m_schedTtiDelay (2) // WILD ACK: based on a m_macChTtiDelay = 1 
{
  m_cschedSapProvider = new PfSchedulerMemberCschedSapProvider (this);
  m_schedSapProvider = new PfSchedulerMemberSchedSapProvider (this);
}

PfFfMacScheduler::~PfFfMacScheduler ()
{
  NS_LOG_FUNCTION (this);
}

void
PfFfMacScheduler::DoDispose ()
{
  NS_LOG_FUNCTION (this);
  delete m_cschedSapProvider;
  delete m_schedSapProvider;
}

TypeId
PfFfMacScheduler::GetTypeId (void)
{
  static TypeId tid = TypeId ("ns3::PfFfMacScheduler")
    .SetParent<FfMacScheduler> ()
    .AddConstructor<PfFfMacScheduler> ();
  return tid;
}



void
PfFfMacScheduler::SetFfMacCschedSapUser (FfMacCschedSapUser* s)
{
  m_cschedSapUser = s;
}

void
PfFfMacScheduler::SetFfMacSchedSapUser (FfMacSchedSapUser* s)
{
  m_schedSapUser = s;
}

FfMacCschedSapProvider*
PfFfMacScheduler::GetFfMacCschedSapProvider ()
{
  return m_cschedSapProvider;
}

FfMacSchedSapProvider*
PfFfMacScheduler::GetFfMacSchedSapProvider ()
{
  return m_schedSapProvider;
}

void
PfFfMacScheduler::DoCschedCellConfigReq (const struct FfMacCschedSapProvider::CschedCellConfigReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // Read the subset of parameters used
  m_cschedCellConfig = params;
  FfMacCschedSapUser::CschedUeConfigCnfParameters cnf;
  cnf.m_result = SUCCESS;
  m_cschedSapUser->CschedUeConfigCnf (cnf);
  return;
}

void
PfFfMacScheduler::DoCschedUeConfigReq (const struct FfMacCschedSapProvider::CschedUeConfigReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // Not used at this stage
  return;
}

void
PfFfMacScheduler::DoCschedLcConfigReq (const struct FfMacCschedSapProvider::CschedLcConfigReqParameters& params)
{
  NS_LOG_FUNCTION (this << " New LC, rnti: "  << params.m_rnti);
  
  std::map <uint16_t, pfsFlowPerf_t>::iterator it;
  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
    {      
      it = m_flowStats.find (params.m_rnti);
      
      if (it == m_flowStats.end ())
        {
          pfsFlowPerf_t flowStats;
          flowStats.flowStart = Simulator::Now ();
          flowStats.totalBytesTransmitted = 0;
          flowStats.lastTtiBytesTrasmitted = 0;
          flowStats.lastAveragedThroughput = 1;
          m_flowStats.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStats));
        }
      else
        {
          NS_LOG_ERROR ("RNTI already exists");
        }
    }
  
  return;
}

void
PfFfMacScheduler::DoCschedLcReleaseReq (const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}

void
PfFfMacScheduler::DoCschedUeReleaseReq (const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}


void
PfFfMacScheduler::DoSchedDlRlcBufferReq (const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters& params)
{
  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
  
  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
  
  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
  
  it =  m_rlcBufferReq.find (flow);
  
  if (it == m_rlcBufferReq.end ())
    {
      m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
    }
  else
    {
      (*it).second = params;
    }  
  
  return;
}

void
PfFfMacScheduler::DoSchedDlPagingBufferReq (const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}

void
PfFfMacScheduler::DoSchedDlMacBufferReq (const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}

int
PfFfMacScheduler::GetRbgSize (int dlbandwidth)
{
  for (int i = 0; i < 4; i++)
    {
      if (dlbandwidth < PfType0AllocationRbg[i])
        {
          return (i + 1);
        }
    }

  return (-1);
}


int 
PfFfMacScheduler::LcActivePerFlow(uint16_t rnti)
{
  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
  int lcActive = 0;
  for (it = m_rlcBufferReq.begin (); it!= m_rlcBufferReq.end (); it++)
    {
      if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize>0) || 
        ((*it).second.m_rlcRetransmissionQueueSize>0) || 
        ((*it).second.m_rlcStatusPduSize>0) ))
        {
          lcActive++;
        }
      if ((*it).first.m_rnti > rnti)
        {
          break;
        }
    }
  return (lcActive);

}


void
PfFfMacScheduler::DoSchedDlTriggerReq (const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters& params)
{
  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf>>4) << " subframe no. " << (0xF & params.m_sfnSf));
  // API generated by RLC for triggering the scheduling of a DL subframe
  
  
  // evaluate the relative channel quality indicator for each UE per each RBG 
  // (since we are using allocation type 0 the small unit of allocation is RBG)
  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
  int rbgSize = GetRbgSize (m_cschedCellConfig.m_dlBandwidth);
  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
  //std::vector <LteFlowId_t> rbgAllocationMap;
  std::map <uint16_t, std::vector <uint16_t> > allocationMap;
  for (int i = 0; i < rbgNum; i++)
    {
      NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
      std::map <uint16_t, pfsFlowPerf_t>::iterator it;
      std::map <uint16_t, pfsFlowPerf_t>::iterator itMax = m_flowStats.end ();
      double rcqiMax = 0.0;
      for (it = m_flowStats.begin (); it != m_flowStats.end (); it++)
        {
          std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
          itCqi = m_a30CqiRxed.find ((*it).first);
          uint8_t cqi = 0;
          if (itCqi == m_a30CqiRxed.end ())
            {
              NS_LOG_DEBUG (this << " No DL-CQI for this UE " << (*it).first);
              cqi = 1;  // start with lowest value
            }
          else
            {
              cqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi.at (0);
            }
          if (cqi > 0)  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
            {
//               NS_LOG_DEBUG (this << " LC active " << LcActivePerFlow ((*it).first));
              if (LcActivePerFlow ((*it).first) > 0)
                {
                  // this UE has data to transmit
                  uint8_t mcs = LteAmc::GetMcsFromCqi (cqi);
                  double achievableRate = ((LteAmc::GetTbSizeFromMcs (mcs, 1) / 8)/0.001); // = TB size / TTI
                  double rcqi = achievableRate / (*it).second.lastAveragedThroughput;
                  NS_LOG_DEBUG (this << " RNTI " << (*it).first << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " avgThr " << (*it).second.lastAveragedThroughput << " RCQI " << rcqi);
                  
                  if (rcqi > rcqiMax)
                    {
                      rcqiMax = rcqi;
                      itMax = it;
                    }
                }
              } // end if cqi
        } // end for m_rlcBufferReq
      
      if (itMax == m_flowStats.end ())
        {
          // no UE available for this RB
          NS_LOG_DEBUG (this << " no UE found");
        }
      else
        {
          std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
          itMap = allocationMap.find ((*itMax).first);
          if (itMap == allocationMap.end ())
            {
              // insert new element
              std::vector <uint16_t> tempMap;
              tempMap.push_back (i);
              allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
            }
          else
            {
              (*itMap).second.push_back (i);
            }
          NS_LOG_DEBUG (this << " UE assigned " << (*itMax).first);
        }
    } // end for RBGs
    
  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
  // creating the correspondent DCIs
  FfMacSchedSapUser::SchedDlConfigIndParameters ret;
  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
  while (itMap != allocationMap.end ())
    {
      // create new BuildDataListElement_s for this LC
      BuildDataListElement_s newEl;
      newEl.m_rnti = (*itMap).first;
      // create the DlDciListElement_s
      DlDciListElement_s newDci;
      std::vector <struct RlcPduListElement_s> newRlcPduLe;
      newDci.m_rnti = (*itMap).first;
      
      uint16_t lcActives = LcActivePerFlow ((*itMap).first);
//       NS_LOG_DEBUG (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
      uint16_t RgbPerRnti = (*itMap).second.size ();
      std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
      itCqi = m_a30CqiRxed.find ((*itMap).first);
      uint8_t worstCqi = 15;
      for (uint16_t k = 0; k < (*itMap).second.size (); k++)
      {
        if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
          {
//             NS_LOG_DEBUG (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
            if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) < worstCqi)
              {
                worstCqi = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0));
              }
          }
        else
          {
            worstCqi = 1; // try with lowest MCS in RBG with no info on channel
          }
      }
//       NS_LOG_DEBUG (this << " CQI " << (uint16_t)worstCqi);
      newDci.m_mcs.push_back (LteAmc::GetMcsFromCqi (worstCqi));
      int tbSize = (LteAmc::GetTbSizeFromMcs (newDci.m_mcs.at (0), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
      newDci.m_tbsSize.push_back (tbSize);

      newDci.m_resAlloc = 0;  // only allocation type 0 at this stage
      newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
      uint32_t rbgMask = 0;
      for (uint16_t k = 0; k < (*itMap).second.size (); k++)
        {
          rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
//           NS_LOG_DEBUG (this << " Allocated PRB " << (*itMap).second.at (k));
        }
      newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)

      // create the rlc PDUs -> equally divide resources among actives LCs
      int rlcPduSize = tbSize / lcActives;
      std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
      for (itBufReq = m_rlcBufferReq.begin (); itBufReq!= m_rlcBufferReq.end (); itBufReq++)
        {
          if (((*itBufReq).first.m_rnti == (*itMap).first) && (((*itBufReq).second.m_rlcTransmissionQueueSize>0) || 
            ((*itBufReq).second.m_rlcRetransmissionQueueSize>0) || 
            ((*itBufReq).second.m_rlcStatusPduSize>0) ))
            {
              RlcPduListElement_s newRlcEl;
              newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
              NS_LOG_DEBUG (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << rlcPduSize);
              newRlcEl.m_size = rlcPduSize;
              newRlcPduLe.push_back (newRlcEl);
            }
          if ((*itBufReq).first.m_rnti > (*itMap).first)
            {
              break;
            }
        }
      newDci.m_ndi.push_back (1); // TBD (new data indicator)
      newDci.m_rv.push_back (0); // TBD (redundancy version)
      
      newEl.m_dci = newDci;
      // ...more parameters -> ingored in this version
      
      newEl.m_rlcPduList.push_back (newRlcPduLe);
      ret.m_buildDataList.push_back (newEl);
      
      // update UE stats
      std::map <uint16_t, pfsFlowPerf_t>::iterator it;
      it = m_flowStats.find ((*itMap).first);
      if (it != m_flowStats.end())
        {
          (*it).second.lastTtiBytesTrasmitted = tbSize;
          NS_LOG_DEBUG (this << " UE bytes txed " << (*it).second.lastTtiBytesTrasmitted);
          (*it).second.totalBytesTransmitted += (*it).second.lastTtiBytesTrasmitted;
          // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
          (*it).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*it).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*it).second.lastTtiBytesTrasmitted / 0.001));
          (*it).second.lastTtiBytesTrasmitted = 0;
          NS_LOG_DEBUG (this << " UE tot bytes " << (*it).second.totalBytesTransmitted);
          NS_LOG_DEBUG (this << " UE avg thr " << (*it).second.lastAveragedThroughput);
          
        }
      else
        {
            NS_LOG_DEBUG (this << " No Stats for this allocated UE");
        }
    
      itMap++;
    } // end while allocation
  ret.m_nrOfPdcchOfdmSymbols = 1;   // TODO: check correct value according the DCIs txed
      
  m_schedSapUser->SchedDlConfigInd (ret);
  
 
  return;
}

void
PfFfMacScheduler::DoSchedDlRachInfoReq (const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}

void
PfFfMacScheduler::DoSchedDlCqiInfoReq (const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters& params)
{
  NS_LOG_FUNCTION (this);

  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
    {
      if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
        {
          // wideband CQI reporting
          std::map <uint16_t,uint8_t>::iterator it;
          uint16_t rnti = params.m_cqiList.at (i).m_rnti;
          it = m_p10CqiRxed.find (rnti);
          if (it == m_p10CqiRxed.end ())
            {
              // create the new entry
              m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
            }
          else
            {
              // update the CQI value
              (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
            }
        }
      else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
        {
          // subband CQI reporting high layer configured
          std::map <uint16_t,SbMeasResult_s>::iterator it;
          uint16_t rnti = params.m_cqiList.at (i).m_rnti;
          it = m_a30CqiRxed.find (rnti);
          if (it == m_a30CqiRxed.end ())
            {
              // create the new entry
              m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
            }
          else
            {
              // update the CQI value
              (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
            }
        }
      else
        {
          NS_LOG_ERROR (this << " CQI type unknown");
        }
    }

  return;
}

void
PfFfMacScheduler::DoSchedUlTriggerReq (const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  
  std::map <uint16_t,uint8_t>::iterator it; 
  int nflows = 0;
  
  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
    {
      // remove old entries of this UE-LC
      if ((*it).second > 0)
      {
        nflows++;
      }
    }
  
  if (nflows==0)
  {
    return ;  // no flows to be scheduled
  } 
   
  
  // Divide the resource equally among the active users
  int rbPerFlow = m_cschedCellConfig.m_ulBandwidth / nflows;
  if (rbPerFlow == 0)
  {
    rbPerFlow = 1;                // at least 1 rbg per flow (till available resource)
  }
  int rbAllocated = 0;
  
  FfMacSchedSapUser::SchedUlConfigIndParameters ret;
  std::vector <uint16_t> rbgAllocationMap;
  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
    {
      if (rbAllocated + rbPerFlow > m_cschedCellConfig.m_ulBandwidth)
        {
          // limit to physical resources last resource assignment
          rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
        }
       // store info on allocation for managing ul-cqi interpretation
      for (int i = 0; i < rbPerFlow; i++)
        {
        	rbgAllocationMap.push_back ((*it).first);
        }
      UlDciListElement_s uldci;
      uldci.m_rnti = (*it).first;
      uldci.m_rbStart = rbAllocated;
      uldci.m_rbLen = rbPerFlow;
      rbAllocated += rbPerFlow;
      std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
      if (itCqi == m_ueCqi.end ())
        {
        	// no cqi info about this UE
          uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
          //NS_LOG_DEBUG (this << " UE does not have ULCQI " << (*it).first );
        }
      else
        {
        	// take the lowest CQI value (worst RB)
        	double minSinr = (*itCqi).second.at(uldci.m_rbStart);
        	for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
        	  {
        	  	//NS_LOG_DEBUG (this << " UE " << (*it).first << " has CQI " << (*itCqi).second.at(i));
        	  	if ((*itCqi).second.at(i) < minSinr)
        	  	  {
        	  	  	minSinr = (*itCqi).second.at(i);
        	  	  }
        	  }
        	 
        	// translate SINR -> cqi: WILD ACK: same as DL
        	double s = log2 ( 1 + (
                          pow (10, minSinr / 10 )  /
                          ( (-log (5.0 * 0.00005 )) / 1.5) ));
          int cqi = LteAmc::GetCqiFromSpectralEfficiency (s);
          if (cqi == 0)
            {
              continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
            }
          uldci.m_mcs = LteAmc::GetMcsFromCqi (cqi);
          //NS_LOG_DEBUG (this << " UE " <<  (*it).first << " minsinr " << minSinr << " -> mcs " << (uint16_t)uldci.m_mcs);
        	
        }
      uldci.m_tbSize = (LteAmc::GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
      uldci.m_ndi = 1;
      uldci.m_cceIndex = 0;
      uldci.m_aggrLevel = 1;
      uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
      uldci.m_hopping = false;
      uldci.m_n2Dmrs = 0;
      uldci.m_tpc = 0; // no power control
      uldci.m_cqiRequest = false; // only period CQI at this stage
      uldci.m_ulIndex = 0; // TDD parameter
      uldci.m_dai = 1; // TDD parameter
      uldci.m_freqHopping = 0;
      uldci.m_pdcchPowerOffset = 0; // not used
      ret.m_dciList.push_back (uldci);      
    }
  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
  m_schedSapUser->SchedUlConfigInd (ret);
  return;
}

void
PfFfMacScheduler::DoSchedUlNoiseInterferenceReq (const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}

void
PfFfMacScheduler::DoSchedUlSrInfoReq (const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  // TODO: Implementation of the API
  return;
}

void
PfFfMacScheduler::DoSchedUlMacCtrlInfoReq (const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  
  std::map <uint16_t,uint8_t>::iterator it;
  
  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
  {
    if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
    {
      // buffer status report
      uint16_t rnti = params.m_macCeList.at (i).m_rnti;
      it = m_ceBsrRxed.find(rnti);
      if (it==m_ceBsrRxed.end())
      {
        // create the new entry
        uint8_t bsr = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0);
        m_ceBsrRxed.insert( std::pair<uint16_t, uint8_t > (rnti, bsr)); // only 1 buffer status is working now
      }
      else
      {
        // update the CQI value
        (*it).second = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0);
      }
    }
  }
  
  return;
}

void
PfFfMacScheduler::DoSchedUlCqiInfoReq (const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters& params)
{
  NS_LOG_FUNCTION (this);
  //NS_LOG_DEBUG (this << " RX UL CQI at " << params.m_sfnSf);
  // correlate info on UL-CQIs with previous scheduling -> calculate m_sfnSf of transmission
  uint32_t frameNo = (0xFF & params.m_sfnSf) >> 4;
  uint32_t subframeNo = (0xF & params.m_sfnSf);
  //NS_LOG_DEBUG (this << " sfn " << frameNo << " sbfn " << subframeNo);
  if (subframeNo - m_schedTtiDelay < 0)
  {
  	frameNo--;
  }
  subframeNo = (subframeNo - m_schedTtiDelay) % 10;
  //NS_LOG_DEBUG (this << " Actual sfn " << frameNo << " sbfn " << subframeNo);
  uint16_t sfnSf = ((0xFF & frameNo) << 4) | (0xF & subframeNo);
  // retrieve the allocation for this subframe
  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
  std::map <uint16_t, std::vector <double> >::iterator itCqi;
  itMap = m_allocationMaps.find (sfnSf);
  if (itMap == m_allocationMaps.end())
  {
  	NS_LOG_DEBUG (this << " Does not find info on allocation");
  	return;
  }
  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
    {
  	  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double    	
    	double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
  	  //NS_LOG_DEBUG (this << " UE " << (*itMap).second.at (i) << " SINRfp " << params.m_ulCqi.m_sinr.at (i) << " sinrdb " << sinr);
  	  itCqi = m_ueCqi.find ((*itMap).second.at (i));
  	  if (itCqi == m_ueCqi.end ())
  	    {
  	    	// create a new entry
  	    	std::vector <double> newCqi;
  	    	for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
  	    	  {
  	    	  	if (i==j)
		 	    	  	{
		 	    	  		newCqi.push_back (sinr);
		 	    	  	}
  	    	  	else
  	    	  	  {
  	    	  	  	// initialize with minumum values according to the fixed point notation
  	    	  	  	newCqi.push_back (LteFfConverter::getMinFpS11dot3Value ());
  	    	  	  }
  	    	  	
  	    	  }
  	    	m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
  	    }
  	  else
  	    {
  	      // update the value
  	      (*itCqi).second.at (i) = sinr;
  	    }
  	  
  	}
  // remove obsolete info on allocation
  m_allocationMaps.erase (m_allocationMaps.begin (), ++itMap);
   
  return;
}

}