Bug-fix on m_macChTtiDelay management on UE-eNB PHY and consequently update RR-PF schedulers and tests
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Marco Miozzo <marco.miozzo@cttc.es>
*/
#include <ns3/log.h>
#include <ns3/pointer.h>
#include <ns3/lte-amc.h>
#include <ns3/rr-ff-mac-scheduler.h>
#include <ns3/simulator.h>
#include <ns3/lte-common.h>
NS_LOG_COMPONENT_DEFINE ("RrFfMacScheduler");
namespace ns3 {
int Type0AllocationRbg[4] = {
10, // RGB size 1
26, // RGB size 2
63, // RGB size 3
110 // RGB size 4
}; // see table 7.1.6.1-1 of 36.213
NS_OBJECT_ENSURE_REGISTERED (RrFfMacScheduler);
class RrSchedulerMemberCschedSapProvider : public FfMacCschedSapProvider
{
public:
RrSchedulerMemberCschedSapProvider (RrFfMacScheduler* scheduler);
// inherited from FfMacCschedSapProvider
virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
private:
RrSchedulerMemberCschedSapProvider ();
RrFfMacScheduler* m_scheduler;
};
RrSchedulerMemberCschedSapProvider::RrSchedulerMemberCschedSapProvider ()
{
}
RrSchedulerMemberCschedSapProvider::RrSchedulerMemberCschedSapProvider (RrFfMacScheduler* scheduler) : m_scheduler (scheduler)
{
}
void
RrSchedulerMemberCschedSapProvider::CschedCellConfigReq (const struct CschedCellConfigReqParameters& params)
{
m_scheduler->DoCschedCellConfigReq (params);
}
void
RrSchedulerMemberCschedSapProvider::CschedUeConfigReq (const struct CschedUeConfigReqParameters& params)
{
m_scheduler->DoCschedUeConfigReq (params);
}
void
RrSchedulerMemberCschedSapProvider::CschedLcConfigReq (const struct CschedLcConfigReqParameters& params)
{
m_scheduler->DoCschedLcConfigReq (params);
}
void
RrSchedulerMemberCschedSapProvider::CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params)
{
m_scheduler->DoCschedLcReleaseReq (params);
}
void
RrSchedulerMemberCschedSapProvider::CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params)
{
m_scheduler->DoCschedUeReleaseReq (params);
}
class RrSchedulerMemberSchedSapProvider : public FfMacSchedSapProvider
{
public:
RrSchedulerMemberSchedSapProvider (RrFfMacScheduler* scheduler);
// inherited from FfMacSchedSapProvider
virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
private:
RrSchedulerMemberSchedSapProvider ();
RrFfMacScheduler* m_scheduler;
};
RrSchedulerMemberSchedSapProvider::RrSchedulerMemberSchedSapProvider ()
{
}
RrSchedulerMemberSchedSapProvider::RrSchedulerMemberSchedSapProvider (RrFfMacScheduler* scheduler)
: m_scheduler (scheduler)
{
}
void
RrSchedulerMemberSchedSapProvider::SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params)
{
m_scheduler->DoSchedDlRlcBufferReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params)
{
m_scheduler->DoSchedDlPagingBufferReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params)
{
m_scheduler->DoSchedDlMacBufferReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params)
{
m_scheduler->DoSchedDlTriggerReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params)
{
m_scheduler->DoSchedDlRachInfoReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params)
{
m_scheduler->DoSchedDlCqiInfoReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params)
{
m_scheduler->DoSchedUlTriggerReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params)
{
m_scheduler->DoSchedUlNoiseInterferenceReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params)
{
m_scheduler->DoSchedUlSrInfoReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params)
{
m_scheduler->DoSchedUlMacCtrlInfoReq (params);
}
void
RrSchedulerMemberSchedSapProvider::SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params)
{
m_scheduler->DoSchedUlCqiInfoReq (params);
}
RrFfMacScheduler::RrFfMacScheduler ()
: m_cschedSapUser (0),
m_schedSapUser (0),
m_schedTtiDelay (4),
// WILD ACK: based on a m_macChTtiDelay = 1
m_nextRntiDl (0),
m_nextRntiUl (0)
{
m_amc = CreateObject <LteAmc> ();
m_cschedSapProvider = new RrSchedulerMemberCschedSapProvider (this);
m_schedSapProvider = new RrSchedulerMemberSchedSapProvider (this);
}
RrFfMacScheduler::~RrFfMacScheduler ()
{
NS_LOG_FUNCTION (this);
}
void
RrFfMacScheduler::DoDispose ()
{
NS_LOG_FUNCTION (this);
delete m_cschedSapProvider;
delete m_schedSapProvider;
}
TypeId
RrFfMacScheduler::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::RrFfMacScheduler")
.SetParent<FfMacScheduler> ()
.AddConstructor<RrFfMacScheduler> ()
.AddAttribute ("CqiTimerThreshold",
"The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
UintegerValue (1000),
MakeUintegerAccessor (&RrFfMacScheduler::m_cqiTimersThreshold),
MakeUintegerChecker<uint32_t> ())
;
return tid;
}
void
RrFfMacScheduler::SetFfMacCschedSapUser (FfMacCschedSapUser* s)
{
m_cschedSapUser = s;
}
void
RrFfMacScheduler::SetFfMacSchedSapUser (FfMacSchedSapUser* s)
{
m_schedSapUser = s;
}
FfMacCschedSapProvider*
RrFfMacScheduler::GetFfMacCschedSapProvider ()
{
return m_cschedSapProvider;
}
FfMacSchedSapProvider*
RrFfMacScheduler::GetFfMacSchedSapProvider ()
{
return m_schedSapProvider;
}
void
RrFfMacScheduler::DoCschedCellConfigReq (const struct FfMacCschedSapProvider::CschedCellConfigReqParameters& params)
{
NS_LOG_FUNCTION (this);
// Read the subset of parameters used
m_cschedCellConfig = params;
FfMacCschedSapUser::CschedUeConfigCnfParameters cnf;
cnf.m_result = SUCCESS;
m_cschedSapUser->CschedUeConfigCnf (cnf);
return;
}
void
RrFfMacScheduler::DoCschedUeConfigReq (const struct FfMacCschedSapProvider::CschedUeConfigReqParameters& params)
{
NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
if (it==m_uesTxMode.end ())
{
m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
}
else
{
(*it).second = params.m_transmissionMode;
}
return;
}
void
RrFfMacScheduler::DoCschedLcConfigReq (const struct FfMacCschedSapProvider::CschedLcConfigReqParameters& params)
{
NS_LOG_FUNCTION (this);
// Not used at this stage
return;
}
void
RrFfMacScheduler::DoCschedLcReleaseReq (const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
RrFfMacScheduler::DoCschedUeReleaseReq (const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
RrFfMacScheduler::DoSchedDlRlcBufferReq (const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters& params)
{
NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
// API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
bool newLc = true;
while (it != m_rlcBufferReq.end ())
{
// remove old entries of this UE-LC
if (((*it).m_rnti == params.m_rnti)&&((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity))
{
it = m_rlcBufferReq.erase (it);
newLc = false;
}
else
{
++it;
}
}
// add the new parameters
m_rlcBufferReq.insert (it, params);
// initialize statistics of the flow in case of new flows
if (newLc == true)
{
m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (params.m_rnti, 1)); // only codeword 0 at this stage (SISO)
// initialized to 1 (i.e., the lowest value for transmitting a signal)
m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (params.m_rnti, m_cqiTimersThreshold));
}
return;
}
void
RrFfMacScheduler::DoSchedDlPagingBufferReq (const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
RrFfMacScheduler::DoSchedDlMacBufferReq (const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
int
RrFfMacScheduler::GetRbgSize (int dlbandwidth)
{
for (int i = 0; i < 4; i++)
{
if (dlbandwidth < Type0AllocationRbg[i])
{
return (i + 1);
}
}
return (-1);
}
bool
RrFfMacScheduler::SortRlcBufferReq (FfMacSchedSapProvider::SchedDlRlcBufferReqParameters i,FfMacSchedSapProvider::SchedDlRlcBufferReqParameters j)
{
return (i.m_rnti<j.m_rnti);
}
void
RrFfMacScheduler::DoSchedDlTriggerReq (const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters& params)
{
NS_LOG_FUNCTION (this << " DL Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
// API generated by RLC for triggering the scheduling of a DL subframe
RefreshDlCqiMaps ();
// Get the actual active flows (queue!=0)
std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
m_rlcBufferReq.sort (SortRlcBufferReq);
int nflows = 0;
int nTbs = 0;
std::map <uint16_t,uint8_t> lcActivesPerRnti;
std::map <uint16_t,uint8_t>::iterator itLcRnti;
for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
{
// NS_LOG_INFO (this << " User " << (*it).m_rnti << " LC " << (uint16_t)(*it).m_logicalChannelIdentity);
// remove old entries of this UE-LC
if ( ((*it).m_rlcTransmissionQueueSize > 0)
|| ((*it).m_rlcRetransmissionQueueSize > 0)
|| ((*it).m_rlcStatusPduSize > 0) )
{
std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it).m_rnti);
uint8_t cqi = 0;
if (itCqi != m_p10CqiRxed.end ())
{
cqi = (*itCqi).second;
}
else
{
cqi = 1; // lowest value fro trying a transmission
}
if (cqi != 0)
{
// CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
nflows++;
itLcRnti = lcActivesPerRnti.find ((*it).m_rnti);
if (itLcRnti != lcActivesPerRnti.end ())
{
(*itLcRnti).second++;
}
else
{
lcActivesPerRnti.insert (std::pair<uint16_t, uint8_t > ((*it).m_rnti, 1));
nTbs++;
}
}
}
}
if (nflows == 0)
{
return;
}
// Divide the resource equally among the active users according to
// Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
int rbgSize = GetRbgSize (m_cschedCellConfig.m_dlBandwidth);
int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
int rbgPerTb = rbgNum / nTbs;
if (rbgPerTb == 0)
{
rbgPerTb = 1; // at least 1 rbg per TB (till available resource)
}
int rbgAllocated = 0;
FfMacSchedSapUser::SchedDlConfigIndParameters ret;
// round robin assignment to all UE-LC registered starting from the subsequent of the one
// served last scheduling trigger
//NS_LOG_DEBUG (this << " next to be served " << m_nextRntiDl << " nflows " << nflows);
if (m_nextRntiDl != 0)
{
for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
{
if ((*it).m_rnti == m_nextRntiDl)
{
break;
}
}
if (it == m_rlcBufferReq.end ())
{
NS_LOG_ERROR (this << " no user found");
}
}
else
{
it = m_rlcBufferReq.begin ();
m_nextRntiDl = (*it).m_rnti;
}
std::map <uint16_t,uint8_t>::iterator itTxMode;
do
{
itLcRnti = lcActivesPerRnti.find ((*it).m_rnti);
if (itLcRnti == lcActivesPerRnti.end ())
{
// skip this entry
it++;
if (it == m_rlcBufferReq.end ())
{
// restart from the first
it = m_rlcBufferReq.begin ();
}
continue;
}
itTxMode = m_uesTxMode.find ((*it).m_rnti);
if (itTxMode == m_uesTxMode.end())
{
NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).m_rnti);
}
int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
int lcNum = (*itLcRnti).second;
// create new BuildDataListElement_s for this RNTI
BuildDataListElement_s newEl;
newEl.m_rnti = (*it).m_rnti;
// create the DlDciListElement_s
DlDciListElement_s newDci;
newDci.m_rnti = (*it).m_rnti;
newDci.m_resAlloc = 0;
newDci.m_rbBitmap = 0;
std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find (newEl.m_rnti);
for (uint8_t i = 0; i < nLayer; i++)
{
if (itCqi == m_p10CqiRxed.end ())
{
newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
}
else
{
newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
}
}
// group the LCs of this RNTI
std::vector <struct RlcPduListElement_s> newRlcPduLe;
// int totRbg = lcNum * rbgPerFlow;
// totRbg = rbgNum / nTbs;
int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (0), rbgPerTb * rbgSize) / 8);
// NS_LOG_DEBUG (this << "Allocate user " << newEl.m_rnti << " LCs " << (uint16_t)(*itLcRnti).second << " bytes " << tbSize << " PRBs " << rbgAllocated * rbgSize << "..." << (rbgAllocated* rbgSize) + (rbgPerTb * rbgSize) - 1 << " mcs " << (uint16_t) newDci.m_mcs.at (0) << " layers " << nLayer);
uint16_t rlcPduSize = tbSize / lcNum;
for (int i = 0; i < lcNum ; i++)
{
for (uint8_t j = 0; j < nLayer; j++)
{
RlcPduListElement_s newRlcEl;
newRlcEl.m_logicalChannelIdentity = (*it).m_logicalChannelIdentity;
// NS_LOG_DEBUG (this << "LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << rlcPduSize << " ID " << (*it).m_rnti << " layer " << (uint16_t)j);
newRlcEl.m_size = rlcPduSize;
UpdateDlRlcBufferInfo ((*it).m_rnti, newRlcEl.m_logicalChannelIdentity, rlcPduSize);
newRlcPduLe.push_back (newRlcEl);
}
it++;
if (it == m_rlcBufferReq.end ())
{
// restart from the first
it = m_rlcBufferReq.begin ();
}
}
uint32_t rbgMask = 0;
for (int i = 0; i < rbgPerTb; i++)
{
rbgMask = rbgMask + (0x1 << rbgAllocated);
rbgAllocated++;
}
newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
for (int i = 0; i < nLayer; i++)
{
newDci.m_tbsSize.push_back (tbSize);
newDci.m_ndi.push_back (1); // TBD (new data indicator)
newDci.m_rv.push_back (0); // TBD (redundancy version)
}
newEl.m_dci = newDci;
// ...more parameters -> ignored in this version
newEl.m_rlcPduList.push_back (newRlcPduLe);
ret.m_buildDataList.push_back (newEl);
if (rbgAllocated == rbgNum)
{
//NS_LOG_DEBUG (this << " FULL " << (*it).m_rnti);
m_nextRntiDl = (*it).m_rnti; // store last RNTI served
break; // no more RGB to be allocated
}
}
while ((*it).m_rnti != m_nextRntiDl);
ret.m_nrOfPdcchOfdmSymbols = 1; // TODO: check correct value according the DCIs txed
m_schedSapUser->SchedDlConfigInd (ret);
return;
}
void
RrFfMacScheduler::DoSchedDlRachInfoReq (const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
RrFfMacScheduler::DoSchedDlCqiInfoReq (const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
std::map <uint16_t,uint8_t>::iterator it;
for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
{
if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
{
// wideband CQI reporting
std::map <uint16_t,uint8_t>::iterator it;
uint16_t rnti = params.m_cqiList.at (i).m_rnti;
it = m_p10CqiRxed.find (rnti);
if (it == m_p10CqiRxed.end ())
{
// create the new entry
m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
// generate correspondent timer
m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
}
else
{
// update the CQI value
(*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
// update correspondent timer
std::map <uint16_t,uint32_t>::iterator itTimers;
itTimers = m_p10CqiTimers.find (rnti);
(*itTimers).second = m_cqiTimersThreshold;
}
}
else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
{
// subband CQI reporting high layer configured
// Not used by RR Scheduler
}
else
{
NS_LOG_ERROR (this << " CQI type unknown");
}
}
return;
}
void
RrFfMacScheduler::DoSchedUlTriggerReq (const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters& params)
{
// NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
RefreshUlCqiMaps ();
std::map <uint16_t,uint32_t>::iterator it;
int nflows = 0;
for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
{
// remove old entries of this UE-LC
if ((*it).second > 0)
{
nflows++;
}
}
if (nflows == 0)
{
return ; // no flows to be scheduled
}
// Divide the resource equally among the active users starting from the subsequent one served last scheduling trigger
int rbPerFlow = m_cschedCellConfig.m_ulBandwidth / nflows;
if (rbPerFlow == 0)
{
rbPerFlow = 1; // at least 1 rbg per flow (till available resource)
}
int rbAllocated = 0;
FfMacSchedSapUser::SchedUlConfigIndParameters ret;
std::vector <uint16_t> rbgAllocationMap;
if (m_nextRntiUl != 0)
{
for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
{
if ((*it).first == m_nextRntiUl)
{
break;
}
}
if (it == m_ceBsrRxed.end ())
{
NS_LOG_ERROR (this << " no user found");
}
}
else
{
it = m_ceBsrRxed.begin ();
m_nextRntiUl = (*it).first;
}
do
{
if (rbAllocated + rbPerFlow > m_cschedCellConfig.m_ulBandwidth)
{
// limit to physical resources last resource assignment
rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
}
UlDciListElement_s uldci;
uldci.m_rnti = (*it).first;
uldci.m_rbStart = rbAllocated;
uldci.m_rbLen = rbPerFlow;
std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
int cqi = 0;
if (itCqi == m_ueCqi.end ())
{
// no cqi info about this UE
uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
NS_LOG_DEBUG (this << " UE does not have ULCQI " << (*it).first );
}
else
{
// take the lowest CQI value (worst RB)
double minSinr = (*itCqi).second.at (uldci.m_rbStart);
for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
{
if ((*itCqi).second.at (i) < minSinr)
{
minSinr = (*itCqi).second.at (i);
}
}
// translate SINR -> cqi: WILD ACK: same as DL
double s = log2 ( 1 + (
pow (10, minSinr / 10 ) /
( (-log (5.0 * 0.00005 )) / 1.5) ));
cqi = m_amc->GetCqiFromSpectralEfficiency (s);
if (cqi == 0)
{
it++;
if (it == m_ceBsrRxed.end ())
{
// restart from the first
it = m_ceBsrRxed.begin ();
}
continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
}
uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
// NS_LOG_DEBUG (this << " UE " << (*it).first << " minsinr " << minSinr << " -> mcs " << (uint16_t)uldci.m_mcs);
}
rbAllocated += rbPerFlow;
// store info on allocation for managing ul-cqi interpretation
for (int i = 0; i < rbPerFlow; i++)
{
rbgAllocationMap.push_back ((*it).first);
}
uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8); // MCS 0 -> UL-AMC TBD
// NS_LOG_DEBUG (this << " UE " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize);
UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
uldci.m_ndi = 1;
uldci.m_cceIndex = 0;
uldci.m_aggrLevel = 1;
uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
uldci.m_hopping = false;
uldci.m_n2Dmrs = 0;
uldci.m_tpc = 0; // no power control
uldci.m_cqiRequest = false; // only period CQI at this stage
uldci.m_ulIndex = 0; // TDD parameter
uldci.m_dai = 1; // TDD parameter
uldci.m_freqHopping = 0;
uldci.m_pdcchPowerOffset = 0; // not used
ret.m_dciList.push_back (uldci);
it++;
if (it == m_ceBsrRxed.end ())
{
// restart from the first
it = m_ceBsrRxed.begin ();
}
if (rbAllocated == m_cschedCellConfig.m_ulBandwidth)
{
// Stop allocation: no more PRBs
m_nextRntiUl = (*it).first;
break;
}
}
while ((*it).first != m_nextRntiUl);
m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
m_schedSapUser->SchedUlConfigInd (ret);
return;
}
void
RrFfMacScheduler::DoSchedUlNoiseInterferenceReq (const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
RrFfMacScheduler::DoSchedUlSrInfoReq (const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
RrFfMacScheduler::DoSchedUlMacCtrlInfoReq (const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
std::map <uint16_t,uint32_t>::iterator it;
for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
{
if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
{
// buffer status report
uint16_t rnti = params.m_macCeList.at (i).m_rnti;
it = m_ceBsrRxed.find (rnti);
if (it == m_ceBsrRxed.end ())
{
// create the new entry
uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0);
int buffer = BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer)); // only 1 buffer status is working now
}
else
{
// update the CQI value
(*it).second = BufferSizeLevelBsr::BsrId2BufferSize (params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0));
// NS_LOG_DEBUG (this << " Update BSR with " << BufferSizeLevelBsr::BsrId2BufferSize (params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0)) << " at " << Simulator::Now ());
}
}
}
return;
}
void
RrFfMacScheduler::DoSchedUlCqiInfoReq (const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
NS_LOG_DEBUG (this << " RX SFNID " << params.m_sfnSf);
// correlate info on UL-CQIs with previous scheduling -> calculate m_sfnSf of transmission
uint32_t frameNo = (0x3FF & (params.m_sfnSf >> 4));
uint32_t subframeNo = (0xF & params.m_sfnSf);
if (subframeNo <= (uint32_t)(m_schedTtiDelay + 1))
{
frameNo--;
subframeNo = (10 + subframeNo - (m_schedTtiDelay + 1)) % 11;
}
else
{
subframeNo = (subframeNo - (m_schedTtiDelay + 1)) % 11;
}
uint16_t sfnSf = ((0x3FF & frameNo) << 4) | (0xF & subframeNo);
// NS_LOG_DEBUG (this << " Actual sfn " << frameNo << " sbfn " << subframeNo << " sfnSf " << sfnSf);
// retrieve the allocation for this subframe
std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
std::map <uint16_t, std::vector <double> >::iterator itCqi;
itMap = m_allocationMaps.find (sfnSf);
if (itMap == m_allocationMaps.end ())
{
NS_LOG_DEBUG (this << " Does not find info on allocation");
return;
}
for (uint32_t i = 0; i < (*itMap).second.size (); i++)
{
// convert from fixed point notation Sxxxxxxxxxxx.xxx to double
double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
// NS_LOG_DEBUG (this << " RB " << i << "UE " << (*itMap).second.at (i) << " SINRfp " << params.m_ulCqi.m_sinr.at (i) << " sinrdb " << sinr);
itCqi = m_ueCqi.find ((*itMap).second.at (i));
if (itCqi == m_ueCqi.end ())
{
// create a new entry
std::vector <double> newCqi;
for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
{
if (i == j)
{
newCqi.push_back (sinr);
}
else
{
// initialize with maximum value according to the fixed point notation
newCqi.push_back (30.0);
}
}
m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
// generate correspondent timer
m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
}
else
{
// update the value
(*itCqi).second.at (i) = sinr;
// update correspondent timer
std::map <uint16_t, uint32_t>::iterator itTimers;
itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
(*itTimers).second = m_cqiTimersThreshold;
}
}
// remove obsolete info on allocation
m_allocationMaps.erase (itMap);
return;
}
void
RrFfMacScheduler::RefreshDlCqiMaps(void)
{
NS_LOG_FUNCTION (this << m_p10CqiTimers.size ());
// refresh DL CQI P01 Map
std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
while (itP10!=m_p10CqiTimers.end ())
{
NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
if ((*itP10).second == 0)
{
// delete correspondent entries
std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
NS_LOG_INFO (this << " P10-CQI exired for user " << (*itP10).first);
m_p10CqiRxed.erase (itMap);
std::map <uint16_t,uint32_t>::iterator temp = itP10;
itP10++;
m_p10CqiTimers.erase (temp);
}
else
{
(*itP10).second--;
itP10++;
}
}
return;
}
void
RrFfMacScheduler::RefreshUlCqiMaps(void)
{
// refresh UL CQI Map
std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
while (itUl!=m_ueCqiTimers.end ())
{
NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
if ((*itUl).second == 0)
{
// delete correspondent entries
std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
(*itMap).second.clear ();
m_ueCqi.erase (itMap);
std::map <uint16_t,uint32_t>::iterator temp = itUl;
itUl++;
m_ueCqiTimers.erase (temp);
}
else
{
(*itUl).second--;
itUl++;
}
}
return;
}
void
RrFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
{
std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
{
if (((*it).m_rnti == rnti) && ((*it).m_logicalChannelIdentity))
{
// NS_LOG_DEBUG (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).m_rlcTransmissionQueueSize << " retxqueue " << (*it).m_rlcRetransmissionQueueSize << " status " << (*it).m_rlcStatusPduSize << " decrease " << size);
// Update queues: RLC tx order Status, ReTx, Tx
// Update status queue
if ((*it).m_rlcStatusPduSize <= size)
{
size -= (*it).m_rlcStatusPduSize;
(*it).m_rlcStatusPduSize = 0;
}
else
{
(*it).m_rlcStatusPduSize -= size;
return;
}
// update retransmission queue
if ((*it).m_rlcRetransmissionQueueSize <= size)
{
size -= (*it).m_rlcRetransmissionQueueSize;
(*it).m_rlcRetransmissionQueueSize = 0;
}
else
{
(*it).m_rlcRetransmissionQueueSize -= size;
return;
}
// update transmission queue
if ((*it).m_rlcTransmissionQueueSize <= size)
{
size -= (*it).m_rlcTransmissionQueueSize;
(*it).m_rlcTransmissionQueueSize = 0;
}
else
{
(*it).m_rlcTransmissionQueueSize -= size;
return;
}
return;
}
}
}
void
RrFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
{
std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
if (it!=m_ceBsrRxed.end ())
{
// NS_LOG_DEBUG (this << " Update RLC BSR UE " << rnti << " size " << size << " BSR " << (*it).second);
if ((*it).second >= size)
{
(*it).second -= size;
}
else
{
(*it).second = 0;
}
}
else
{
NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
}
}
void
RrFfMacScheduler::TransmissionModeConfigurationUpdate (uint16_t rnti, uint8_t txMode)
{
NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
FfMacCschedSapUser::CschedUeConfigUpdateIndParameters params;
params.m_rnti = rnti;
params.m_transmissionMode = txMode;
m_cschedSapUser->CschedUeConfigUpdateInd (params);
}
}