src/lte/model/lte-enb-phy.cc
author Marco Miozzo <marco.miozzo@cttc.es>
Thu, 22 Mar 2012 18:16:01 +0100
changeset 8714 398bbcbb3f42
parent 8538 fbd322b7d863
child 8726 f6f0e2531457
permissions -rw-r--r--
Add MIMO model, test and documentation

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Author: Giuseppe Piro  <g.piro@poliba.it>
 *         Marco Miozzo <mmiozzo@cttc.es>
 */

#include <ns3/object-factory.h>
#include <ns3/log.h>
#include <math.h>
#include <ns3/simulator.h>
#include <ns3/attribute-accessor-helper.h>
#include <ns3/double.h>


#include "lte-enb-phy.h"
#include "lte-net-device.h"
#include "lte-spectrum-value-helper.h"
#include "ideal-control-messages.h"
#include "lte-enb-net-device.h"
#include "lte-enb-mac.h"
#include <ns3/lte-common.h>


NS_LOG_COMPONENT_DEFINE ("LteEnbPhy");

namespace ns3 {


////////////////////////////////////////
// member SAP forwarders
////////////////////////////////////////


class EnbMemberLteEnbPhySapProvider : public LteEnbPhySapProvider
{
public:
  EnbMemberLteEnbPhySapProvider (LteEnbPhy* phy);

  // inherited from LteEnbPhySapProvider
  virtual void SendMacPdu (Ptr<Packet> p);
  virtual void SetBandwidth (uint8_t ulBandwidth, uint8_t dlBandwidth);
  virtual void SetCellId (uint16_t cellId);
  virtual void SendIdealControlMessage (Ptr<IdealControlMessage> msg);
  virtual void SetTransmissionMode (uint16_t  rnti, uint8_t txMode);
  

private:
  LteEnbPhy* m_phy;
};

EnbMemberLteEnbPhySapProvider::EnbMemberLteEnbPhySapProvider (LteEnbPhy* phy) : m_phy (phy)
{

}


void
EnbMemberLteEnbPhySapProvider::SendMacPdu (Ptr<Packet> p)
{
  m_phy->DoSendMacPdu (p);
}

void
EnbMemberLteEnbPhySapProvider::SetBandwidth (uint8_t ulBandwidth, uint8_t dlBandwidth)
{
  m_phy->DoSetBandwidth (ulBandwidth, dlBandwidth);
}

void
EnbMemberLteEnbPhySapProvider::SetCellId (uint16_t cellId)
{
  m_phy->DoSetCellId (cellId);
}

void
EnbMemberLteEnbPhySapProvider::SendIdealControlMessage (Ptr<IdealControlMessage> msg)
{
  m_phy->DoSendIdealControlMessage (msg);
}

void
EnbMemberLteEnbPhySapProvider::SetTransmissionMode (uint16_t  rnti, uint8_t txMode)
{
  m_phy->DoSetTransmissionMode (rnti, txMode);
}


////////////////////////////////////////
// generic LteEnbPhy methods
////////////////////////////////////////



NS_OBJECT_ENSURE_REGISTERED (LteEnbPhy);


LteEnbPhy::LteEnbPhy ()
{
  NS_LOG_FUNCTION (this);
  NS_FATAL_ERROR ("This constructor should not be called");
}

LteEnbPhy::LteEnbPhy (Ptr<LteSpectrumPhy> dlPhy, Ptr<LteSpectrumPhy> ulPhy)
  : LtePhy (dlPhy, ulPhy),
    m_nrFrames (0),
    m_nrSubFrames (0)
{
  m_enbPhySapProvider = new EnbMemberLteEnbPhySapProvider (this);
  Simulator::ScheduleNow (&LteEnbPhy::StartFrame, this);
}

TypeId
LteEnbPhy::GetTypeId (void)
{
  static TypeId tid = TypeId ("ns3::LteEnbPhy")
    .SetParent<LtePhy> ()
    .AddConstructor<LteEnbPhy> ()
    .AddAttribute ("TxPower",
                   "Transmission power in dBm",
                   DoubleValue (30.0),
                   MakeDoubleAccessor (&LteEnbPhy::SetTxPower, 
                                       &LteEnbPhy::GetTxPower),
                   MakeDoubleChecker<double> ())
    .AddAttribute ("NoiseFigure",
                   "Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver."
                   " According to Wikipedia (http://en.wikipedia.org/wiki/Noise_figure), this is "
                   "\"the difference in decibels (dB) between"
                   " the noise output of the actual receiver to the noise output of an "
                   " ideal receiver with the same overall gain and bandwidth when the receivers "
                   " are connected to sources at the standard noise temperature T0.\" "
                   "In this model, we consider T0 = 290K.",
                   DoubleValue (5.0),
                   MakeDoubleAccessor (&LteEnbPhy::SetNoiseFigure, 
                                       &LteEnbPhy::GetNoiseFigure),
                   MakeDoubleChecker<double> ())
  ;
  return tid;
}


LteEnbPhy::~LteEnbPhy ()
{
}

void
LteEnbPhy::DoDispose ()
{
  NS_LOG_FUNCTION (this);
  m_ueAttached.clear ();
  delete m_enbPhySapProvider;
  LtePhy::DoDispose ();
}

void
LteEnbPhy::DoStart ()
{
  NS_LOG_FUNCTION (this);
  Ptr<SpectrumValue> noisePsd = LteSpectrumValueHelper::CreateNoisePowerSpectralDensity (m_ulEarfcn, m_ulBandwidth, m_noiseFigure);
  m_uplinkSpectrumPhy->SetNoisePowerSpectralDensity (noisePsd);
  LtePhy::DoStart ();
}


void
LteEnbPhy::SetLteEnbPhySapUser (LteEnbPhySapUser* s)
{
  m_enbPhySapUser = s;
}

LteEnbPhySapProvider*
LteEnbPhy::GetLteEnbPhySapProvider ()
{
  return (m_enbPhySapProvider);
}

void
LteEnbPhy::SetTxPower (double pow)
{
  NS_LOG_FUNCTION (this << pow);
  m_txPower = pow;
}

double
LteEnbPhy::GetTxPower () const
{
  NS_LOG_FUNCTION (this);
  return m_txPower;
}

void
LteEnbPhy::SetNoiseFigure (double nf)
{
  NS_LOG_FUNCTION (this << nf);
  m_noiseFigure = nf;
}

double
LteEnbPhy::GetNoiseFigure () const
{
  NS_LOG_FUNCTION (this);
  return m_noiseFigure;
}

bool
LteEnbPhy::AddUePhy (uint16_t rnti, Ptr<LteUePhy> phy)
{
  std::map <uint16_t, Ptr<LteUePhy> >::iterator it;
  it = m_ueAttached.find (rnti);
  if (it == m_ueAttached.end ())
    {
      m_ueAttached.insert (std::pair<uint16_t, Ptr<LteUePhy> > (rnti, phy));
      return (true);
    }
  else
    {
      NS_LOG_ERROR ("UE already attached");
      return (false);
    }
}

bool
LteEnbPhy::DeleteUePhy (uint16_t rnti)
{
  std::map <uint16_t, Ptr<LteUePhy> >::iterator it;
  it = m_ueAttached.find (rnti);
  if (it == m_ueAttached.end ())
    {
      NS_LOG_ERROR ("UE not attached");
      return (false);
    }
  else
    {
      m_ueAttached.erase (it);
      return (true);
    }
}



void
LteEnbPhy::DoSendMacPdu (Ptr<Packet> p)
{
//   NS_LOG_FUNCTION (this << pb->GetNPackets () << pb->GetSize ());
//   return GetDownlinkSpectrumPhy ()->StartTx (pb);

  NS_LOG_FUNCTION (this);
  SetMacPdu (p);
}


void
LteEnbPhy::PhyPduReceived (Ptr<Packet> p)
{
  NS_LOG_FUNCTION (this);
  m_enbPhySapUser->ReceivePhyPdu (p);
}

void
LteEnbPhy::DoSetDownlinkSubChannels ()
{
  NS_LOG_FUNCTION (this);
  Ptr<SpectrumValue> txPsd = CreateTxPowerSpectralDensity ();
  m_downlinkSpectrumPhy->SetTxPowerSpectralDensity (txPsd);
}


Ptr<SpectrumValue>
LteEnbPhy::CreateTxPowerSpectralDensity ()
{
  NS_LOG_FUNCTION (this);

  Ptr<SpectrumValue> psd = LteSpectrumValueHelper::CreateTxPowerSpectralDensity (m_dlEarfcn, m_dlBandwidth, m_txPower, GetDownlinkSubChannels ());

  return psd;
}


void
LteEnbPhy::CalcChannelQualityForUe (std::vector <double> sinr, Ptr<LteSpectrumPhy> ue)
{
  NS_LOG_FUNCTION (this);
}


void
LteEnbPhy::DoSendIdealControlMessage (Ptr<IdealControlMessage> msg)
{
  NS_LOG_FUNCTION (this << msg);
  // queues the message (wait for MAC-PHY delay)
  SetControlMessages (msg);
}



void
LteEnbPhy::ReceiveIdealControlMessage (Ptr<IdealControlMessage> msg)
{
  NS_LOG_FUNCTION (this << msg);
  m_enbPhySapUser->ReceiveIdealControlMessage (msg);
}



void
LteEnbPhy::StartFrame (void)
{
  NS_LOG_FUNCTION (this);

  ++m_nrFrames;
  NS_LOG_INFO ("-----frame " << m_nrFrames << "-----");
  m_nrSubFrames = 0;
  StartSubFrame ();
}


void
LteEnbPhy::StartSubFrame (void)
{
  NS_LOG_FUNCTION (this);

  ++m_nrSubFrames;
  NS_LOG_INFO ("-----sub frame " << m_nrSubFrames << "-----");

  // send the current burst of control messages
  std::list<Ptr<IdealControlMessage> > ctrlMsg = GetControlMessages ();
  std::vector <int> dlRb;
  if (ctrlMsg.size () > 0)
    {
      std::list<Ptr<IdealControlMessage> >::iterator it;
      it = ctrlMsg.begin ();
      while (it != ctrlMsg.end ())
        {
          Ptr<IdealControlMessage> msg = (*it);
          if (msg->GetMessageType () == IdealControlMessage::DL_DCI)
            {
              std::map <uint16_t, Ptr<LteUePhy> >::iterator it2;
              Ptr<DlDciIdealControlMessage> dci = DynamicCast<DlDciIdealControlMessage> (msg);
              it2 = m_ueAttached.find (dci->GetDci ().m_rnti);

              if (it2 == m_ueAttached.end ())
                {
                  NS_LOG_ERROR ("UE not attached");
                }
              else
                {
                  // get the tx power spectral density according to DL-DCI(s)
                  // translate the DCI to Spectrum framework
                  uint32_t mask = 0x1;
                  for (int i = 0; i < 32; i++)
                    {
                      if (((dci->GetDci ().m_rbBitmap & mask) >> i) == 1)
                        {
                          for (int k = 0; k < GetRbgSize (); k++)
                            {
                              dlRb.push_back ((i * GetRbgSize ()) + k);
                              //NS_LOG_DEBUG(this << " [enb]DL-DCI allocated PRB " << (i*GetRbgSize()) + k);
                            }
                        }
                      mask = (mask << 1);
                    }
                  (*it2).second->ReceiveIdealControlMessage (msg);
                }
            }
          else if (msg->GetMessageType () == IdealControlMessage::UL_DCI)
            {
              std::map <uint16_t, Ptr<LteUePhy> >::iterator it2;
              Ptr<UlDciIdealControlMessage> dci = DynamicCast<UlDciIdealControlMessage> (msg);
              it2 = m_ueAttached.find (dci->GetDci ().m_rnti);

              if (it2 == m_ueAttached.end ())
                {
                  NS_LOG_ERROR ("UE not attached");
                }
              else
                {
                  (*it2).second->ReceiveIdealControlMessage (msg);
                  // send info of TB to LteSpectrumPhy 
                  // translate to allocation map
                  std::vector <int> rbMap;
                  for (int i = dci->GetDci ().m_rbStart; i < dci->GetDci ().m_rbStart + dci->GetDci ().m_rbLen; i++)
                    {
                      rbMap.push_back (i);
                    }
                  m_uplinkSpectrumPhy->AddExpectedTb (dci->GetDci ().m_rnti, dci->GetDci ().m_tbSize, dci->GetDci ().m_mcs, rbMap, 0 /* always SISO*/);
                }
            }
          ctrlMsg.pop_front ();
          it = ctrlMsg.begin ();
        }
    }
  // set the current tx power spectral density
  SetDownlinkSubChannels (dlRb);
  // send the current burts of packets
  Ptr<PacketBurst> pb = GetPacketBurst ();
  if (pb)
    {
      NS_LOG_LOGIC (this << " start TX");
      m_downlinkSpectrumPhy->StartTx (pb);
    }

  // trigger the MAC
  m_enbPhySapUser->SubframeIndication (m_nrFrames, m_nrSubFrames);


  // trigger the UE(s)
  std::map <uint16_t, Ptr<LteUePhy> >::iterator it;
  for (it = m_ueAttached.begin (); it != m_ueAttached.end (); it++)
    {
      (*it).second->SubframeIndication (m_nrFrames, m_nrSubFrames);
    }

  Simulator::Schedule (Seconds (GetTti ()),
                       &LteEnbPhy::EndSubFrame,
                       this);

}


void
LteEnbPhy::EndSubFrame (void)
{
  NS_LOG_FUNCTION (this << Simulator::Now ().GetSeconds ());
  if (m_nrSubFrames == 10)
    {
      Simulator::ScheduleNow (&LteEnbPhy::EndFrame, this);
    }
  else
    {
      Simulator::ScheduleNow (&LteEnbPhy::StartSubFrame, this);
    }
}


void
LteEnbPhy::EndFrame (void)
{
  NS_LOG_FUNCTION (this << Simulator::Now ().GetSeconds ());
  Simulator::ScheduleNow (&LteEnbPhy::StartFrame, this);
}


void 
LteEnbPhy::GenerateCqiFeedback (const SpectrumValue& sinr)
{
  NS_LOG_FUNCTION (this << sinr);
  Ptr<LteEnbNetDevice> thisDevice = GetDevice ()->GetObject<LteEnbNetDevice> ();

  m_enbPhySapUser->UlCqiReport (CreateUlCqiReport (sinr));


}


UlCqi_s
LteEnbPhy::CreateUlCqiReport (const SpectrumValue& sinr)
{
  NS_LOG_FUNCTION (this << sinr);
  Values::const_iterator it;
  UlCqi_s ulcqi;
  ulcqi.m_type = UlCqi_s::PUSCH;
  int i = 0;
  for (it = sinr.ConstValuesBegin (); it != sinr.ConstValuesEnd (); it++)
    {
      double sinrdb = 10 * log10 ((*it));
      // convert from double to fixed point notation Sxxxxxxxxxxx.xxx
      int16_t sinrFp = LteFfConverter::double2fpS11dot3 (sinrdb);
      ulcqi.m_sinr.push_back (sinrFp);
      i++;
    }
  return (ulcqi);
	
}

void
LteEnbPhy::DoSetTransmissionMode (uint16_t  rnti, uint8_t txMode)
{
  NS_LOG_FUNCTION (this << rnti << (uint16_t)txMode);
  // UL supports only SISO MODE
}


};