src/simulator/high-precision-128.cc
author Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
Thu, 08 Apr 2010 13:19:28 +0200
changeset 6177 2ae38db64dd1
parent 5285 8d504cac4094
child 6178 4e738879aef3
permissions -rw-r--r--
bug 863: Wrong Scalar arithmetics

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2006 INRIA
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
 */
#include "high-precision-128.h"
#include "ns3/test.h"
#include "ns3/fatal-error.h"
#include <math.h>
#include <iostream>

namespace ns3 {

#ifdef GATHER_STATISTICS
int HighPrecision::m_nfastadds = 0;
int HighPrecision::m_nfastsubs = 0;
int HighPrecision::m_nfastmuls = 0;
int HighPrecision::m_nfastcmps = 0;
int HighPrecision::m_nfastgets = 0;
int HighPrecision::m_nslowadds = 0;
int HighPrecision::m_nslowsubs = 0;
int HighPrecision::m_nslowmuls = 0;
int HighPrecision::m_nslowcmps = 0;
int HighPrecision::m_nslowgets = 0;
int HighPrecision::m_ndivs = 0;
int HighPrecision::m_nconversions = 0;

void 
HighPrecision::PrintStats (void)
{
  double nadds = m_nfastadds + m_nslowadds;
  double nsubs = m_nfastsubs + m_nslowsubs;
  double ncmps = m_nfastcmps + m_nslowcmps;
  double nmuls = m_nfastmuls + m_nslowmuls;
  double ngets = m_nfastgets + m_nslowgets;
  double fast_add_ratio = m_nfastadds / nadds;
  double fast_sub_ratio = m_nfastsubs / nsubs;
  double fast_cmp_ratio = m_nfastcmps / ncmps;
  double fast_mul_ratio = m_nfastmuls / nmuls;
  double fast_get_ratio = m_nfastgets / ngets;

  std::cout <<
    "add="<<fast_add_ratio<<std::endl<<
    "sub="<<fast_sub_ratio<<std::endl<<
    "cmp="<<fast_cmp_ratio<<std::endl<<
    "mul="<<fast_mul_ratio<<std::endl<<
    "get="<<fast_get_ratio<<std::endl<<
    "nadds="<<nadds<<std::endl<<
    "nsubs="<<nsubs<<std::endl<<
    "ncmps="<<ncmps<<std::endl<<
    "nmuls="<<nmuls<<std::endl<<
    "ngets="<<ngets<<std::endl<<
    "ndivs="<<m_ndivs<<std::endl<<
    "nconversions="<<m_nconversions<<std::endl
    ;
}
#else
void 
HighPrecision::PrintStats (void)
{}
#endif /* GATHER_STATISTICS */


const double HighPrecision::MAX_64 = 18446744073709551615.0;


HighPrecision::HighPrecision (double value)
{
  int64_t hi = (int64_t) floor (value);
  uint64_t lo = (uint64_t) ((value - floor (value)) * MAX_64);
  if (lo == 0)
    {
      m_isFast = true;
      m_fastValue = hi;
      return;
    }
  else
    {
      m_isFast = false;
      m_slowValue = _cairo_int64_to_int128 (hi);
      m_slowValue = _cairo_int128_lsl (m_slowValue, 64);
      cairo_int128_t clo = _cairo_uint128_to_int128 (_cairo_uint64_to_uint128 (lo));
      m_slowValue = _cairo_int128_add (m_slowValue, clo);
    }
}

void
HighPrecision::EnsureSlow (void)
{
  if (m_isFast)
    {
      HP128INC (m_nconversions++);
      m_slowValue = _cairo_int64_to_int128 (m_fastValue);
      m_slowValue = _cairo_int128_lsl (m_slowValue, 64);
      m_isFast = false;
    }
}

int64_t
HighPrecision::SlowGetInteger (void) const
{
  cairo_int128_t value = _cairo_int128_rsa (m_slowValue, 64);
  return _cairo_int128_to_int64 (value);
}

double 
HighPrecision::SlowGetDouble (void) const
{
  bool is_negative = _cairo_int128_negative (m_slowValue);
  cairo_int128_t value = is_negative?_cairo_int128_negate (m_slowValue):m_slowValue;
  cairo_int128_t hi = _cairo_int128_rsa (value, 64);
  cairo_uint128_t lo = _cairo_int128_sub (value, _cairo_uint128_lsl (hi, 64));
  double flo = _cairo_uint128_to_uint64 (lo);
  flo /= MAX_64;
  double retval = _cairo_uint128_to_uint64 (hi);
  retval += flo;
  retval *= is_negative?-1.0:1.0;
  return retval;
}
bool 
HighPrecision::SlowAdd (HighPrecision const &o)
{
  EnsureSlow ();
  const_cast<HighPrecision &> (o).EnsureSlow ();
  m_slowValue = _cairo_int128_add (m_slowValue, o.m_slowValue);
  return false;
}
bool 
HighPrecision::SlowSub (HighPrecision const &o)
{
  EnsureSlow ();
  const_cast<HighPrecision &> (o).EnsureSlow ();
  m_slowValue = _cairo_int128_sub (m_slowValue, o.m_slowValue);
  return false;
}
bool 
HighPrecision::SlowMul (HighPrecision const &o)
{
  EnsureSlow ();
  const_cast<HighPrecision &> (o).EnsureSlow ();
  //use the 128 bits multiplication
  m_slowValue = Mul128(m_slowValue,o.m_slowValue);
  return false;
}
/**
 * this function multiplies two 128 bits fractions considering
 * the high 64 bits as the integer part and the low 64 bits
 * as the fractional part. It takes into account the sign
 * of the operands to produce a signed 128 bits result.
 */
cairo_int128_t
HighPrecision::Mul128(cairo_int128_t a, cairo_int128_t b )
{
  //Implement the 128 bits multiplication
  cairo_int128_t result;
  cairo_uint128_t hiPart,loPart,midPart;
  bool resultNegative = false, signA = false,signB = false;

  //take the sign of the operands
  signA = _cairo_int128_negative (a);
  signB = _cairo_int128_negative (b);
  //the result is negative only if one of the operand is negative
  if ((signA == true && signB == false) ||(signA == false && signB == true))
    {
  	 resultNegative = true;
    }
  //now take the absolute part to make sure that the resulting operands are positive
  if (signA == true)
  {
	  a = _cairo_int128_negate (a);
  }
  if (signB == true)
  {
  	  b = _cairo_int128_negate (b);
  }

  //Multiplying (a.h 2^64 + a.l) x (b.h 2^64 + b.l) =
  //			2^128 a.h b.h + 2^64*(a.h b.l+b.h a.l) + a.l b.l
  //get the low part a.l b.l
  //multiply the fractional part
  loPart = _cairo_uint64x64_128_mul (a.lo, b.lo);
  //compute the middle part 2^64*(a.h b.l+b.h a.l)
  midPart = _cairo_uint128_add(_cairo_uint64x64_128_mul(a.lo, b.hi),
		  _cairo_uint64x64_128_mul(a.hi, b.lo)) ;
  //truncate the low part
  result.lo = _cairo_uint64_add(loPart.hi,midPart.lo);
  //compute the high part 2^128 a.h b.h
  hiPart = _cairo_uint64x64_128_mul (a.hi, b.hi);
  //truncate the high part and only use the low part
  result.hi = _cairo_uint64_add(hiPart.lo,midPart.hi);
  //if the high part is not zero, put a warning
  if (hiPart.hi !=0)
  {
	  NS_FATAL_ERROR("High precision 128 bits multiplication error: multiplication overflow.");
  }
  //add the sign to the result
  if (resultNegative)
  {
	 result = _cairo_int128_negate (result);
  }
  return result;
}

bool 
HighPrecision::Div (HighPrecision const &o)
{
  HP128INC (m_ndivs++);
  EnsureSlow ();
  const_cast<HighPrecision &> (o).EnsureSlow ();

  cairo_int128_t result = Div128 (m_slowValue, o.m_slowValue);
  m_slowValue = result;
  return false;
}

cairo_int128_t
HighPrecision::Div128 (cairo_int128_t sa, cairo_int128_t sb)
{
  bool negResult, negA, negB;
  // take the sign of the operands
  negA = _cairo_int128_negative (sa);
  negB = _cairo_int128_negative (sb);
  // the result is negative only if one of the operand is negative
  negResult = (negA && !negB) || (!negA && negB);
  // now take the absolute part to make sure that the resulting operands are positive
  cairo_uint128_t a, b;
  a = _cairo_int128_to_uint128 (sa);
  b = _cairo_int128_to_uint128 (sb);
  a = negA ? _cairo_uint128_negate (a):a;
  b = negB ? _cairo_uint128_negate (b):b;

  cairo_uquorem128_t qr = _cairo_uint128_divrem (a, b);
  cairo_uint128_t result = _cairo_uint128_lsl (qr.quo, 64);
  // Now, manage the remainder
  cairo_uint128_t tmp = _cairo_uint128_rsl (qr.rem, 64);
  cairo_uint128_t zero = _cairo_uint64_to_uint128 (0);
  cairo_uint128_t rem, div;
  if (_cairo_uint128_eq (tmp, zero))
    {
      rem = _cairo_uint128_lsl (qr.rem, 64);
      div = b;
    }
  else
    {
      rem = qr.rem;
      div = _cairo_uint128_rsl (b, 64);
    }
  qr = _cairo_uint128_divrem (rem, div);
  result = _cairo_uint128_add (result, qr.quo);
  result = negResult ? _cairo_uint128_negate (result):result;
  return _cairo_uint128_to_int128 (result);
}
int 
HighPrecision::SlowCompare (HighPrecision const &o) const
{
  const_cast<HighPrecision *> (this)->EnsureSlow ();
  const_cast<HighPrecision &> (o).EnsureSlow ();
  if (_cairo_int128_lt (m_slowValue, o.m_slowValue))
    {
      return -1;
    }
  else if (_cairo_int128_eq (m_slowValue, o.m_slowValue))
    {
      return 0;
    }
  else
    {
      return 1;
    }
}

} // namespace ns3

#include "ns3/test.h"

#define CHECK_EXPECTED(a,b) \
  NS_TEST_ASSERT_MSG_EQ(a.GetInteger(),b,"Arithmetic failure: " << (a.GetInteger()) << "!=" << (b))

#define V(v) \
  HighPrecision (v, false)

namespace ns3 {

class Hp128ArithmeticTestCase : public TestCase
{
public:
  Hp128ArithmeticTestCase ();
  virtual bool DoRun (void);
};

Hp128ArithmeticTestCase::Hp128ArithmeticTestCase ()
  : TestCase ("Check basic arithmetic operations")
{}
bool 
Hp128ArithmeticTestCase::DoRun (void)
{
  HighPrecision a, b;
  a = HighPrecision (1, false);
  b = HighPrecision (1, false);

  a.Sub (b);
  CHECK_EXPECTED (a, 0);

  a = V (1);
  a.Sub (V(2));
  CHECK_EXPECTED (a, -1);

  a = V (1);
  a.Sub (V(3));
  CHECK_EXPECTED (a, -2);

  a = V (1);
  a.Sub (V(-1));
  CHECK_EXPECTED (a, 2);

  a = V (1);
  a.Sub (V(-2));
  CHECK_EXPECTED (a, 3);

  a = V (-3);
  a.Sub (V(-4));
  CHECK_EXPECTED (a, 1);

  a = V (-2);
  a.Sub (V(3));
  CHECK_EXPECTED (a, -5);

  a = V (1);
  a.Add (V(2));
  CHECK_EXPECTED (a, 3);

  a = V (1);
  a.Add (V(-3));
  CHECK_EXPECTED (a, -2);

  a = V (0);
  a.Add (V(0));
  CHECK_EXPECTED (a, 0);

  a = V (0);
  a.Mul (V(0));
  CHECK_EXPECTED (a, 0);
  a = V (0);
  a.Mul (V(1));
  CHECK_EXPECTED (a, 0);
  a = V (0);
  a.Mul (V(-1));
  CHECK_EXPECTED (a, 0);
  a = V (1);
  a.Mul (V(0));
  CHECK_EXPECTED (a, 0);
  a = V (1);
  a.Mul (V(1));
  CHECK_EXPECTED (a, 1);
  a = V (1);
  a.Mul (V(-1));
  CHECK_EXPECTED (a, -1);
  a = V (-1);
  a.Mul (V(-1));
  CHECK_EXPECTED (a, 1);

  a = V (0);
  a.Mul (V(1));
  CHECK_EXPECTED (a, 0);
  a = V (0);
  a.Mul (V(-1));
  CHECK_EXPECTED (a, 0);
  a = V (1);
  a.Mul (V(1));
  CHECK_EXPECTED (a, 1);
  a = V (1);
  a.Mul (V(-1));
  CHECK_EXPECTED (a, -1);
  a = V (-1);
  a.Mul (V(1));
  CHECK_EXPECTED (a, -1);
  a = V (-1);
  a.Mul (V(-1));
  CHECK_EXPECTED (a, 1);



  a = V (2);
  a.Mul (V(3));
  a.Div (V(3));
  CHECK_EXPECTED (a, 2);

  // Below, the division loses precision because 2/3 is not
  // representable exactly in 64.64 integers. So, we got
  // something super close but the final rounding kills us.
  a = V (2);
  a.Div (V(3));
  a.Mul (V(3));
  CHECK_EXPECTED (a, 1);

  // The example below shows that we really do not lose
  // much precision internally: it is almost always the
  // final conversion which loses precision.
  a = V (2000000000);
  a.Div (V(3));
  a.Mul (V(3));
  CHECK_EXPECTED (a, 1999999999);

  return false;
}

class Hp128Bug455TestCase : public TestCase
{
public:
  Hp128Bug455TestCase();
  virtual bool DoRun (void);
};

Hp128Bug455TestCase::Hp128Bug455TestCase()
  : TestCase("Test case for bug 455")
{}
bool 
Hp128Bug455TestCase::DoRun (void)
{
  HighPrecision a = HighPrecision (0.1);
  a.Div (HighPrecision (1.25));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 0.08, "The original testcase");
  a = HighPrecision (0.5);
  a.Mul(HighPrecision (5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 2.5, "Simple test for multiplication");
  a = HighPrecision (-0.5);
  a.Mul(HighPrecision (5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -2.5, "Test sign, first operation negative");
  a = HighPrecision (-0.5);
  a.Mul(HighPrecision (-5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 2.5, "both operands negative");
  a = HighPrecision (0.5);
  a.Mul(HighPrecision (-5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -2.5, "only second operand negative");

  return false;
}


class Hp128Bug863TestCase : public TestCase
{
public:
  Hp128Bug863TestCase();
  virtual bool DoRun (void);
};

Hp128Bug863TestCase::Hp128Bug863TestCase()
  : TestCase("Test case for bug 863")
{}
bool 
Hp128Bug863TestCase::DoRun (void)
{
  HighPrecision a = HighPrecision (0.9);
  a.Div (HighPrecision (1));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 0.9, "The original testcase");
  a = HighPrecision (0.5);
  a.Div(HighPrecision (0.5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 1.0, "Simple test for division");
  a = HighPrecision (-0.5);
  a.Div(HighPrecision (0.5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -1.0, "first argument negative");
  a = HighPrecision (0.5);
  a.Div(HighPrecision (-0.5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -1.0, "second argument negative");
  a = HighPrecision (-0.5);
  a.Div(HighPrecision (-0.5));
  NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 1.0, "both arguments negative");

  return false;
}

static class HighPrecision128TestSuite : public TestSuite
{
public:
  HighPrecision128TestSuite()
    : TestSuite ("high-precision-128", UNIT)
  {
    AddTestCase (new Hp128ArithmeticTestCase());
    AddTestCase (new Hp128Bug455TestCase());
    AddTestCase (new Hp128Bug863TestCase());
  }
} g_highPrecision128TestSuite;

} // namespace ns3