/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2006 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
*/
#include "high-precision-128.h"
#include "ns3/test.h"
#include "ns3/fatal-error.h"
#include <math.h>
#include <iostream>
namespace ns3 {
#ifdef GATHER_STATISTICS
int HighPrecision::m_nfastadds = 0;
int HighPrecision::m_nfastsubs = 0;
int HighPrecision::m_nfastmuls = 0;
int HighPrecision::m_nfastcmps = 0;
int HighPrecision::m_nfastgets = 0;
int HighPrecision::m_nslowadds = 0;
int HighPrecision::m_nslowsubs = 0;
int HighPrecision::m_nslowmuls = 0;
int HighPrecision::m_nslowcmps = 0;
int HighPrecision::m_nslowgets = 0;
int HighPrecision::m_ndivs = 0;
int HighPrecision::m_nconversions = 0;
void
HighPrecision::PrintStats (void)
{
double nadds = m_nfastadds + m_nslowadds;
double nsubs = m_nfastsubs + m_nslowsubs;
double ncmps = m_nfastcmps + m_nslowcmps;
double nmuls = m_nfastmuls + m_nslowmuls;
double ngets = m_nfastgets + m_nslowgets;
double fast_add_ratio = m_nfastadds / nadds;
double fast_sub_ratio = m_nfastsubs / nsubs;
double fast_cmp_ratio = m_nfastcmps / ncmps;
double fast_mul_ratio = m_nfastmuls / nmuls;
double fast_get_ratio = m_nfastgets / ngets;
std::cout <<
"add="<<fast_add_ratio<<std::endl<<
"sub="<<fast_sub_ratio<<std::endl<<
"cmp="<<fast_cmp_ratio<<std::endl<<
"mul="<<fast_mul_ratio<<std::endl<<
"get="<<fast_get_ratio<<std::endl<<
"nadds="<<nadds<<std::endl<<
"nsubs="<<nsubs<<std::endl<<
"ncmps="<<ncmps<<std::endl<<
"nmuls="<<nmuls<<std::endl<<
"ngets="<<ngets<<std::endl<<
"ndivs="<<m_ndivs<<std::endl<<
"nconversions="<<m_nconversions<<std::endl
;
}
#else
void
HighPrecision::PrintStats (void)
{}
#endif /* GATHER_STATISTICS */
const double HighPrecision::MAX_64 = 18446744073709551615.0;
HighPrecision::HighPrecision (double value)
{
int64_t hi = (int64_t) floor (value);
uint64_t lo = (uint64_t) ((value - floor (value)) * MAX_64);
if (lo == 0)
{
m_isFast = true;
m_fastValue = hi;
return;
}
else
{
m_isFast = false;
m_slowValue = _cairo_int64_to_int128 (hi);
m_slowValue = _cairo_int128_lsl (m_slowValue, 64);
cairo_int128_t clo = _cairo_uint128_to_int128 (_cairo_uint64_to_uint128 (lo));
m_slowValue = _cairo_int128_add (m_slowValue, clo);
}
}
void
HighPrecision::EnsureSlow (void)
{
if (m_isFast)
{
HP128INC (m_nconversions++);
m_slowValue = _cairo_int64_to_int128 (m_fastValue);
m_slowValue = _cairo_int128_lsl (m_slowValue, 64);
m_isFast = false;
}
}
int64_t
HighPrecision::SlowGetInteger (void) const
{
cairo_int128_t value = _cairo_int128_rsa (m_slowValue, 64);
return _cairo_int128_to_int64 (value);
}
double
HighPrecision::SlowGetDouble (void) const
{
bool is_negative = _cairo_int128_negative (m_slowValue);
cairo_int128_t value = is_negative?_cairo_int128_negate (m_slowValue):m_slowValue;
cairo_int128_t hi = _cairo_int128_rsa (value, 64);
cairo_uint128_t lo = _cairo_int128_sub (value, _cairo_uint128_lsl (hi, 64));
double flo = _cairo_uint128_to_uint64 (lo);
flo /= MAX_64;
double retval = _cairo_uint128_to_uint64 (hi);
retval += flo;
retval *= is_negative?-1.0:1.0;
return retval;
}
bool
HighPrecision::SlowAdd (HighPrecision const &o)
{
EnsureSlow ();
const_cast<HighPrecision &> (o).EnsureSlow ();
m_slowValue = _cairo_int128_add (m_slowValue, o.m_slowValue);
return false;
}
bool
HighPrecision::SlowSub (HighPrecision const &o)
{
EnsureSlow ();
const_cast<HighPrecision &> (o).EnsureSlow ();
m_slowValue = _cairo_int128_sub (m_slowValue, o.m_slowValue);
return false;
}
bool
HighPrecision::SlowMul (HighPrecision const &o)
{
EnsureSlow ();
const_cast<HighPrecision &> (o).EnsureSlow ();
//use the 128 bits multiplication
m_slowValue = Mul128(m_slowValue,o.m_slowValue);
return false;
}
/**
* this function multiplies two 128 bits fractions considering
* the high 64 bits as the integer part and the low 64 bits
* as the fractional part. It takes into account the sign
* of the operands to produce a signed 128 bits result.
*/
cairo_int128_t
HighPrecision::Mul128(cairo_int128_t a, cairo_int128_t b )
{
//Implement the 128 bits multiplication
cairo_int128_t result;
cairo_uint128_t hiPart,loPart,midPart;
bool resultNegative = false, signA = false,signB = false;
//take the sign of the operands
signA = _cairo_int128_negative (a);
signB = _cairo_int128_negative (b);
//the result is negative only if one of the operand is negative
if ((signA == true && signB == false) ||(signA == false && signB == true))
{
resultNegative = true;
}
//now take the absolute part to make sure that the resulting operands are positive
if (signA == true)
{
a = _cairo_int128_negate (a);
}
if (signB == true)
{
b = _cairo_int128_negate (b);
}
//Multiplying (a.h 2^64 + a.l) x (b.h 2^64 + b.l) =
// 2^128 a.h b.h + 2^64*(a.h b.l+b.h a.l) + a.l b.l
//get the low part a.l b.l
//multiply the fractional part
loPart = _cairo_uint64x64_128_mul (a.lo, b.lo);
//compute the middle part 2^64*(a.h b.l+b.h a.l)
midPart = _cairo_uint128_add(_cairo_uint64x64_128_mul(a.lo, b.hi),
_cairo_uint64x64_128_mul(a.hi, b.lo)) ;
//truncate the low part
result.lo = _cairo_uint64_add(loPart.hi,midPart.lo);
//compute the high part 2^128 a.h b.h
hiPart = _cairo_uint64x64_128_mul (a.hi, b.hi);
//truncate the high part and only use the low part
result.hi = _cairo_uint64_add(hiPart.lo,midPart.hi);
//if the high part is not zero, put a warning
if (hiPart.hi !=0)
{
NS_FATAL_ERROR("High precision 128 bits multiplication error: multiplication overflow.");
}
//add the sign to the result
if (resultNegative)
{
result = _cairo_int128_negate (result);
}
return result;
}
bool
HighPrecision::Div (HighPrecision const &o)
{
HP128INC (m_ndivs++);
EnsureSlow ();
const_cast<HighPrecision &> (o).EnsureSlow ();
cairo_int128_t result = Div128 (m_slowValue, o.m_slowValue);
m_slowValue = result;
return false;
}
cairo_int128_t
HighPrecision::Div128 (cairo_int128_t sa, cairo_int128_t sb)
{
bool negResult, negA, negB;
// take the sign of the operands
negA = _cairo_int128_negative (sa);
negB = _cairo_int128_negative (sb);
// the result is negative only if one of the operand is negative
negResult = (negA && !negB) || (!negA && negB);
// now take the absolute part to make sure that the resulting operands are positive
cairo_uint128_t a, b;
a = _cairo_int128_to_uint128 (sa);
b = _cairo_int128_to_uint128 (sb);
a = negA ? _cairo_uint128_negate (a):a;
b = negB ? _cairo_uint128_negate (b):b;
cairo_uquorem128_t qr = _cairo_uint128_divrem (a, b);
cairo_uint128_t result = _cairo_uint128_lsl (qr.quo, 64);
// Now, manage the remainder
cairo_uint128_t tmp = _cairo_uint128_rsl (qr.rem, 64);
cairo_uint128_t zero = _cairo_uint64_to_uint128 (0);
cairo_uint128_t rem, div;
if (_cairo_uint128_eq (tmp, zero))
{
rem = _cairo_uint128_lsl (qr.rem, 64);
div = b;
}
else
{
rem = qr.rem;
div = _cairo_uint128_rsl (b, 64);
}
qr = _cairo_uint128_divrem (rem, div);
result = _cairo_uint128_add (result, qr.quo);
result = negResult ? _cairo_uint128_negate (result):result;
return _cairo_uint128_to_int128 (result);
}
int
HighPrecision::SlowCompare (HighPrecision const &o) const
{
const_cast<HighPrecision *> (this)->EnsureSlow ();
const_cast<HighPrecision &> (o).EnsureSlow ();
if (_cairo_int128_lt (m_slowValue, o.m_slowValue))
{
return -1;
}
else if (_cairo_int128_eq (m_slowValue, o.m_slowValue))
{
return 0;
}
else
{
return 1;
}
}
} // namespace ns3
#include "ns3/test.h"
#define CHECK_EXPECTED(a,b) \
NS_TEST_ASSERT_MSG_EQ(a.GetInteger(),b,"Arithmetic failure: " << (a.GetInteger()) << "!=" << (b))
#define V(v) \
HighPrecision (v, false)
namespace ns3 {
class Hp128ArithmeticTestCase : public TestCase
{
public:
Hp128ArithmeticTestCase ();
virtual bool DoRun (void);
};
Hp128ArithmeticTestCase::Hp128ArithmeticTestCase ()
: TestCase ("Check basic arithmetic operations")
{}
bool
Hp128ArithmeticTestCase::DoRun (void)
{
HighPrecision a, b;
a = HighPrecision (1, false);
b = HighPrecision (1, false);
a.Sub (b);
CHECK_EXPECTED (a, 0);
a = V (1);
a.Sub (V(2));
CHECK_EXPECTED (a, -1);
a = V (1);
a.Sub (V(3));
CHECK_EXPECTED (a, -2);
a = V (1);
a.Sub (V(-1));
CHECK_EXPECTED (a, 2);
a = V (1);
a.Sub (V(-2));
CHECK_EXPECTED (a, 3);
a = V (-3);
a.Sub (V(-4));
CHECK_EXPECTED (a, 1);
a = V (-2);
a.Sub (V(3));
CHECK_EXPECTED (a, -5);
a = V (1);
a.Add (V(2));
CHECK_EXPECTED (a, 3);
a = V (1);
a.Add (V(-3));
CHECK_EXPECTED (a, -2);
a = V (0);
a.Add (V(0));
CHECK_EXPECTED (a, 0);
a = V (0);
a.Mul (V(0));
CHECK_EXPECTED (a, 0);
a = V (0);
a.Mul (V(1));
CHECK_EXPECTED (a, 0);
a = V (0);
a.Mul (V(-1));
CHECK_EXPECTED (a, 0);
a = V (1);
a.Mul (V(0));
CHECK_EXPECTED (a, 0);
a = V (1);
a.Mul (V(1));
CHECK_EXPECTED (a, 1);
a = V (1);
a.Mul (V(-1));
CHECK_EXPECTED (a, -1);
a = V (-1);
a.Mul (V(-1));
CHECK_EXPECTED (a, 1);
a = V (0);
a.Mul (V(1));
CHECK_EXPECTED (a, 0);
a = V (0);
a.Mul (V(-1));
CHECK_EXPECTED (a, 0);
a = V (1);
a.Mul (V(1));
CHECK_EXPECTED (a, 1);
a = V (1);
a.Mul (V(-1));
CHECK_EXPECTED (a, -1);
a = V (-1);
a.Mul (V(1));
CHECK_EXPECTED (a, -1);
a = V (-1);
a.Mul (V(-1));
CHECK_EXPECTED (a, 1);
a = V (2);
a.Mul (V(3));
a.Div (V(3));
CHECK_EXPECTED (a, 2);
// Below, the division loses precision because 2/3 is not
// representable exactly in 64.64 integers. So, we got
// something super close but the final rounding kills us.
a = V (2);
a.Div (V(3));
a.Mul (V(3));
CHECK_EXPECTED (a, 1);
// The example below shows that we really do not lose
// much precision internally: it is almost always the
// final conversion which loses precision.
a = V (2000000000);
a.Div (V(3));
a.Mul (V(3));
CHECK_EXPECTED (a, 1999999999);
return false;
}
class Hp128Bug455TestCase : public TestCase
{
public:
Hp128Bug455TestCase();
virtual bool DoRun (void);
};
Hp128Bug455TestCase::Hp128Bug455TestCase()
: TestCase("Test case for bug 455")
{}
bool
Hp128Bug455TestCase::DoRun (void)
{
HighPrecision a = HighPrecision (0.1);
a.Div (HighPrecision (1.25));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 0.08, "The original testcase");
a = HighPrecision (0.5);
a.Mul(HighPrecision (5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 2.5, "Simple test for multiplication");
a = HighPrecision (-0.5);
a.Mul(HighPrecision (5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -2.5, "Test sign, first operation negative");
a = HighPrecision (-0.5);
a.Mul(HighPrecision (-5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 2.5, "both operands negative");
a = HighPrecision (0.5);
a.Mul(HighPrecision (-5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -2.5, "only second operand negative");
return false;
}
class Hp128Bug863TestCase : public TestCase
{
public:
Hp128Bug863TestCase();
virtual bool DoRun (void);
};
Hp128Bug863TestCase::Hp128Bug863TestCase()
: TestCase("Test case for bug 863")
{}
bool
Hp128Bug863TestCase::DoRun (void)
{
HighPrecision a = HighPrecision (0.9);
a.Div (HighPrecision (1));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 0.9, "The original testcase");
a = HighPrecision (0.5);
a.Div(HighPrecision (0.5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 1.0, "Simple test for division");
a = HighPrecision (-0.5);
a.Div(HighPrecision (0.5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -1.0, "first argument negative");
a = HighPrecision (0.5);
a.Div(HighPrecision (-0.5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), -1.0, "second argument negative");
a = HighPrecision (-0.5);
a.Div(HighPrecision (-0.5));
NS_TEST_ASSERT_MSG_EQ (a.GetDouble (), 1.0, "both arguments negative");
return false;
}
static class HighPrecision128TestSuite : public TestSuite
{
public:
HighPrecision128TestSuite()
: TestSuite ("high-precision-128", UNIT)
{
AddTestCase (new Hp128ArithmeticTestCase());
AddTestCase (new Hp128Bug455TestCase());
AddTestCase (new Hp128Bug863TestCase());
}
} g_highPrecision128TestSuite;
} // namespace ns3