--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/propagation/model/jakes-process.h Mon May 21 19:15:32 2012 +0400
@@ -0,0 +1,92 @@
+/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
+/*
+ * Copyright (c) 2012 Telum (www.telum.ru)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation;
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * Author: Kirill Andreev <andreev@telum.ru>, Alexander Sofronov <sofronov@telum.ru>
+ */
+#ifndef DOPPLER_PROCESS_H
+#define DOPPLER_PROCESS_H
+
+#include "ns3/object.h"
+#include "ns3/nstime.h"
+#include <complex>
+
+namespace ns3
+{
+/**
+ * \ingroup fading
+ *
+ * \brief Implementation for a single path Stationary Jakes propagation loss model.
+ *
+ * The Jakes propagation loss model implemented here is
+ * described in [1].
+ *
+ * We consider one transmitter - receiver pair and calculate
+ * the complex coefficients for this case as follow:
+ * \f[ X(t)=X_c(t) + j X_s(t)\f]
+ * \f[ X_c(t) = \frac{2}{\sqrt{M}}\sum_{n=1}^{M}\cos(\psi_n)\cos(\omega_d t\cos(\alpha_n)+\phi_n)\f]
+ * \f[ X_s(t) = \frac{2}{\sqrt{M}}\sum_{n=1}^{M}\sin(\psi_n)\cos(\omega_d t\cos(\alpha_n)+\phi_n)\f]
+ * with
+ * \f[ \alpha_n = \frac{2\pi n - \pi + \theta}{4M}, n=1,2, \ldots,M\f]
+ * where
+ *\f$\theta\f$, \f$\phi\f$, and \f$\psi_n\f$ are statically independent and uniformly distributed over \f$[-\pi, \pi)\f$ for all \f$n\f$.
+ *
+ *
+ * [1] Y. R. Zheng and C. Xiao, "Simulation Models With Correct
+ * Statistical Properties for Rayleigh Fading Channel", IEEE
+ * Trans. on Communications, Vol. 51, pp 920-928, June 2003
+ */
+class JakesProcess : public Object
+{
+public:
+ static TypeId GetTypeId (void);
+ JakesProcess ();
+ virtual ~JakesProcess();
+ std::complex<double> GetComplexGain () const;
+ /// Get Channel gain [dB]
+ double GetChannelGainDb () const;
+private:
+ /// Represents a single oscillator
+ struct Oscillator
+ {
+ /// Initiate oscillator with complex amplitude, initial phase and rotation speed
+ Oscillator (std::complex<double> amplitude, double initialPhase, double omega);
+ // Get the complex amplitude at moment \param t
+ std::complex<double> GetValueAt (Time t) const;
+ /// Complex number \f[Re=\cos(\psi_n), Im = i\sin(\psi_n)]
+ std::complex<double> m_amplitude;
+ /// Phase \f[\phi_n] of the oscillator
+ double m_phase;
+ /// Rotation speed of the oscillator \f[\omega_d \cos(\alpha_n)]
+ double m_omega;
+ };
+ /// PI Constant
+ static const double PI;
+private:
+ void SetNOscillators (unsigned int nOscillators);
+ void SetDopplerFrequencyHz (double dopplerFrequencyHz);
+ void ConstructOscillators ();
+private:
+ /// Vector of oscillators:
+ std::vector<Oscillator> m_oscillators;
+ ///\name Attributes:
+ ///\{
+ double m_omegaDopplerMax;
+ unsigned int m_nOscillators;
+ ///\}
+};
+} // namespace ns3
+#endif // DOPPLER_PROCESS_H