--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/propagation/examples/jakes-propagation-model-example.cc Mon May 21 19:15:32 2012 +0400
@@ -0,0 +1,98 @@
+/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
+/*
+ * Copyright (c) 2012 Telum (www.telum.ru)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation;
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * Author: Kirill Andreev <andreev@telum.ru>
+ */
+#include "ns3/core-module.h"
+#include "ns3/mobility-module.h"
+#include "ns3/jakes-propagation-loss-model.h"
+#include <vector>
+#include <math.h>
+
+using namespace ns3;
+/**
+ * \ingroup propagation
+ * \brief Constructs a JakesPropagationlossModel and print the loss value as a function of time into std::cout.
+ * Distribution and correlation statistics is compared woth a theoretical ones using R package (http://www.r-project.org/).
+ * Scripts are presented within comments.
+ */
+class JakesPropagationExample
+{
+public:
+ JakesPropagationExample ();
+ ~JakesPropagationExample ();
+private:
+ Ptr<PropagationLossModel> m_loss;
+ Ptr<MobilityModel> m_firstMobility;
+ Ptr<MobilityModel> m_secondMobility;
+ Time m_step;
+ EventId m_nextEvent;
+ void Next ();
+
+};
+
+JakesPropagationExample::JakesPropagationExample () :
+ m_step (Seconds (0.0002)) //1/5000 part of the second
+{
+ m_loss = CreateObject<JakesPropagationLossModel> ();
+ m_firstMobility = CreateObject<ConstantPositionMobilityModel> ();
+ m_secondMobility = CreateObject<ConstantPositionMobilityModel> ();
+ m_firstMobility->SetPosition (Vector (0, 0, 0));
+ m_secondMobility->SetPosition (Vector (10, 0, 0));
+ m_nextEvent = Simulator::Schedule (m_step, &JakesPropagationExample::Next, this);
+}
+
+JakesPropagationExample::~JakesPropagationExample ()
+{
+}
+
+void JakesPropagationExample::Next ()
+{
+ m_nextEvent = Simulator::Schedule (m_step, &JakesPropagationExample::Next, this);
+ std::cout << Simulator::Now ().GetMilliSeconds () << " " << m_loss->CalcRxPower (0, m_firstMobility, m_secondMobility) << std::endl;
+}
+
+int main (int argc, char *argv[])
+{
+ Config::SetDefault ("ns3::JakesProcess::NumberOfOscillators", UintegerValue (100));
+ CommandLine cmd;
+ cmd.Parse (argc, argv);
+ JakesPropagationExample example;
+ Simulator::Stop (Seconds (1000));
+ Simulator::Run ();
+ Simulator::Destroy ();
+ /*
+ * R script for plotting a distribution:
+ data<-read.table ("data")
+ rayleigh<-(rnorm(1e6)^2+rnorm(1e6)^2)/2
+ qqplot(10*log10(rayleigh), data$V2, main="QQ-plot for improved Jakes model", xlab="Reference Rayleigh distribution [power, dB]", ylab="Sum-of-sinusoids distribution [power, dB]", xlim=c(-45, 10), ylim=c(-45, 10))
+ lines (c(-50, 50), c(-50, 50))
+ abline (v=-50:50*2, h=-50:50*2, col="light grey")
+ */
+
+ /*
+ * R script to plot autocorrelation function:
+ # Read amplitude distribution:
+ data<-10^(read.table ("data")$V2/20)
+ x<-1:2000/10
+ acf (data, lag.max=200, main="Autocorrelation function of the improved Jakes model", xlab="Time x200 microseconds ", ylab="Autocorrelation")
+ # If we have a delta T = 1/5000 part of the second and doppler freq = 80 Hz
+ lines (x, besselJ(x*80*2*pi/5000, 0)^2)
+ abline (h=0:10/10, col="light grey")
+ */
+ return 0;
+}