|
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
|
2 // |
|
3 // Copyright (c) 2006 Georgia Tech Research Corporation |
|
4 // |
|
5 // This program is free software; you can redistribute it and/or modify |
|
6 // it under the terms of the GNU General Public License version 2 as |
|
7 // published by the Free Software Foundation; |
|
8 // |
|
9 // This program is distributed in the hope that it will be useful, |
|
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12 // GNU General Public License for more details. |
|
13 // |
|
14 // You should have received a copy of the GNU General Public License |
|
15 // along with this program; if not, write to the Free Software |
|
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
17 // |
|
18 // Author: Rajib Bhattacharjea<raj.b@gatech.edu> |
|
19 // |
|
20 |
|
21 #include <iostream> |
|
22 |
|
23 #include <math.h> |
|
24 #include <stdlib.h> |
|
25 #include <sys/time.h> // for gettimeofday |
|
26 #include <unistd.h> |
|
27 #include <iostream> |
|
28 #include <sys/types.h> |
|
29 #include <sys/stat.h> |
|
30 #include <fcntl.h> |
|
31 |
|
32 |
|
33 #include "random-variable.h" |
|
34 #include "rng-stream.h" |
|
35 #include "fatal-error.h" |
|
36 |
|
37 using namespace std; |
|
38 |
|
39 namespace ns3{ |
|
40 // Seed methods |
|
41 |
|
42 Seed::~Seed() |
|
43 { |
|
44 } |
|
45 |
|
46 RandomSeed::RandomSeed() |
|
47 { |
|
48 } |
|
49 |
|
50 RandomSeed::~RandomSeed() |
|
51 { |
|
52 } |
|
53 |
|
54 bool RandomSeed::IsRandom() const |
|
55 { |
|
56 return true; |
|
57 } |
|
58 |
|
59 ConstantSeed::~ConstantSeed() |
|
60 { |
|
61 } |
|
62 |
|
63 bool ConstantSeed::IsRandom() const |
|
64 { |
|
65 return false; |
|
66 } |
|
67 |
|
68 ConstantSeed::ConstantSeed(uint32_t s) |
|
69 { |
|
70 seeds[0] = s; |
|
71 seeds[1] = s; |
|
72 seeds[2] = s; |
|
73 seeds[3] = s; |
|
74 seeds[4] = s; |
|
75 seeds[5] = s; |
|
76 } |
|
77 |
|
78 ConstantSeed::ConstantSeed(uint32_t s0, uint32_t s1, uint32_t s2, |
|
79 uint32_t s3, uint32_t s4, uint32_t s5) |
|
80 { |
|
81 seeds[0] = s0; |
|
82 seeds[1] = s1; |
|
83 seeds[2] = s2; |
|
84 seeds[3] = s3; |
|
85 seeds[4] = s4; |
|
86 seeds[5] = s5; |
|
87 } |
|
88 //----------------------------------------------------------------------------- |
|
89 //----------------------------------------------------------------------------- |
|
90 // RandomVariable methods |
|
91 |
|
92 bool RandomVariable::initialized = false; // True if RngStream seed set |
|
93 bool RandomVariable::useDevRandom = false; // True if use /dev/random desired |
|
94 bool RandomVariable::globalSeedSet = false; // True if GlobalSeed called |
|
95 int RandomVariable::devRandom = -1; |
|
96 uint32_t RandomVariable::globalSeed[6]; |
|
97 unsigned long RandomVariable::heuristic_sequence; |
|
98 |
|
99 RandomVariable::RandomVariable() |
|
100 { |
|
101 m_generator = new RngStream(); |
|
102 RandomVariable::Initialize(); // sets the seed for the static object |
|
103 m_generator->InitializeStream(); |
|
104 } |
|
105 |
|
106 RandomVariable::~RandomVariable() |
|
107 { |
|
108 delete m_generator; |
|
109 } |
|
110 |
|
111 uint32_t RandomVariable::GetIntValue() |
|
112 { |
|
113 return (uint32_t)GetValue(); |
|
114 } |
|
115 |
|
116 void RandomVariable::UseDevRandom(bool udr) |
|
117 { |
|
118 RandomVariable::useDevRandom = udr; |
|
119 } |
|
120 |
|
121 bool RandomVariable::SetSeed(const Seed& s) |
|
122 { |
|
123 // Seed this stream with the specified seed |
|
124 if (s.IsRandom()) |
|
125 { |
|
126 uint32_t seeds[6]; |
|
127 while(true) |
|
128 { // Insure seeds are valid |
|
129 GetRandomSeeds(seeds); |
|
130 if (RngStream::CheckSeed(seeds)) break; |
|
131 } |
|
132 m_generator->SetSeeds(seeds); |
|
133 return true; |
|
134 } |
|
135 // Not random seed, use specified |
|
136 const ConstantSeed& cs = (ConstantSeed&)s; |
|
137 if (!RngStream::CheckSeed(cs.seeds)) |
|
138 { |
|
139 cout << "Constant seed failed valid check" << endl; |
|
140 return false; // Seed is not valid |
|
141 } |
|
142 m_generator->SetSeeds(cs.seeds); |
|
143 return true; |
|
144 } |
|
145 |
|
146 //----------------------------------------------------------------------------- |
|
147 //----------------------------------------------------------------------------- |
|
148 // RandomVariable static methods |
|
149 void RandomVariable::UseGlobalSeed(const Seed& s) |
|
150 { |
|
151 if (RandomVariable::globalSeedSet) |
|
152 { |
|
153 cout << "Random number generator already initialized!" << endl; |
|
154 cout << "Call to RandomVariable::UseGlobalSeed() ignored" << endl; |
|
155 return; |
|
156 } |
|
157 if (s.IsRandom()) return; // Random seed is the default |
|
158 const ConstantSeed& cs = (ConstantSeed&)s; |
|
159 RandomVariable::globalSeed[0] = cs.seeds[0]; |
|
160 RandomVariable::globalSeed[1] = cs.seeds[1]; |
|
161 RandomVariable::globalSeed[2] = cs.seeds[2]; |
|
162 RandomVariable::globalSeed[3] = cs.seeds[3]; |
|
163 RandomVariable::globalSeed[4] = cs.seeds[4]; |
|
164 RandomVariable::globalSeed[5] = cs.seeds[5]; |
|
165 if (!RngStream::CheckSeed(RandomVariable::globalSeed)) |
|
166 NS_FATAL_ERROR("Invalid seed"); |
|
167 |
|
168 RandomVariable::globalSeedSet = true; |
|
169 } |
|
170 |
|
171 void RandomVariable::Initialize() |
|
172 { |
|
173 if (RandomVariable::initialized) return; // Already initialized and seeded |
|
174 RandomVariable::initialized = true; |
|
175 if (!RandomVariable::globalSeedSet) |
|
176 { // No global seed, try a random one |
|
177 GetRandomSeeds(globalSeed); |
|
178 } |
|
179 // Seed the RngStream package |
|
180 RngStream::SetPackageSeed(globalSeed); |
|
181 } |
|
182 |
|
183 void RandomVariable::GetRandomSeeds(uint32_t seeds[6]) |
|
184 { |
|
185 // Check if /dev/random exists |
|
186 if (RandomVariable::useDevRandom && RandomVariable::devRandom < 0) |
|
187 { |
|
188 RandomVariable::devRandom = open("/dev/random", O_RDONLY); |
|
189 } |
|
190 if (RandomVariable::devRandom > 0) |
|
191 { // Use /dev/random |
|
192 while(true) |
|
193 { |
|
194 for (int i = 0; i < 6; ++i) |
|
195 { |
|
196 read(RandomVariable::devRandom, &seeds[i], sizeof(seeds[i])); |
|
197 } |
|
198 if (RngStream::CheckSeed(seeds)) break; // Got a valid one |
|
199 } |
|
200 } |
|
201 else |
|
202 { // Seed from time of day (code borrowed from ns2 random seeding) |
|
203 // Thanks to John Heidemann for this technique |
|
204 while(true) |
|
205 { |
|
206 timeval tv; |
|
207 gettimeofday(&tv, 0); |
|
208 seeds[0] = (tv.tv_sec^tv.tv_usec^(++heuristic_sequence <<8)) |
|
209 & 0x7fffffff; |
|
210 gettimeofday(&tv, 0); |
|
211 seeds[1] = (tv.tv_sec^tv.tv_usec^(++heuristic_sequence <<8)) |
|
212 & 0x7fffffff; |
|
213 gettimeofday(&tv, 0); |
|
214 seeds[2] = (tv.tv_sec^tv.tv_usec^(++heuristic_sequence <<8)) |
|
215 & 0x7fffffff; |
|
216 gettimeofday(&tv, 0); |
|
217 seeds[3] = (tv.tv_sec^tv.tv_usec^(++heuristic_sequence <<8)) |
|
218 & 0x7fffffff; |
|
219 gettimeofday(&tv, 0); |
|
220 seeds[4] = (tv.tv_sec^tv.tv_usec^(++heuristic_sequence <<8)) |
|
221 & 0x7fffffff; |
|
222 gettimeofday(&tv, 0); |
|
223 seeds[5] = (tv.tv_sec^tv.tv_usec^(++heuristic_sequence <<8)) |
|
224 & 0x7fffffff; |
|
225 if (RngStream::CheckSeed(seeds)) break; // Got a valid one |
|
226 } |
|
227 } |
|
228 } |
|
229 |
|
230 //----------------------------------------------------------------------------- |
|
231 //----------------------------------------------------------------------------- |
|
232 // UniformVariable methods |
|
233 UniformVariable::UniformVariable() |
|
234 : m_min(0), m_max(1.0) { } |
|
235 |
|
236 UniformVariable::UniformVariable(double s, double l) |
|
237 : m_min(s), m_max(l) { } |
|
238 |
|
239 UniformVariable::UniformVariable(const UniformVariable& c) |
|
240 : m_min(c.m_min), m_max(c.m_max) { } |
|
241 |
|
242 double UniformVariable::GetValue() |
|
243 { |
|
244 return m_min + m_generator->RandU01() * (m_max - m_min); |
|
245 } |
|
246 |
|
247 RandomVariable* UniformVariable::Copy() const |
|
248 { |
|
249 return new UniformVariable(*this); |
|
250 } |
|
251 //----------------------------------------------------------------------------- |
|
252 //----------------------------------------------------------------------------- |
|
253 // ConstantVariable methods |
|
254 ConstantVariable::ConstantVariable() |
|
255 : m_const(0) { } |
|
256 |
|
257 ConstantVariable::ConstantVariable(double c) |
|
258 : m_const(c) { }; |
|
259 |
|
260 ConstantVariable::ConstantVariable(const ConstantVariable& c) |
|
261 : m_const(c.m_const) { } |
|
262 |
|
263 void ConstantVariable::NewConstant(double c) |
|
264 { m_const = c;} |
|
265 |
|
266 double ConstantVariable::GetValue() |
|
267 { |
|
268 return m_const; |
|
269 } |
|
270 |
|
271 uint32_t ConstantVariable::GetIntValue() |
|
272 { |
|
273 return (uint32_t)m_const; |
|
274 } |
|
275 |
|
276 RandomVariable* ConstantVariable::Copy() const |
|
277 { |
|
278 return new ConstantVariable(*this); |
|
279 } |
|
280 //----------------------------------------------------------------------------- |
|
281 //----------------------------------------------------------------------------- |
|
282 // SequentialVariable methods |
|
283 SequentialVariable::SequentialVariable(double f, double l, double i, uint32_t c) |
|
284 : m_min(f), m_max(l), m_increment(ConstantVariable(i).Copy()), m_consecutive(c), |
|
285 m_current(f), m_currentConsecutive(0) |
|
286 { |
|
287 } |
|
288 |
|
289 SequentialVariable::SequentialVariable(double f, double l, const RandomVariable& i, uint32_t c) |
|
290 : m_min(f), m_max(l), m_increment(i.Copy()), m_consecutive(c), |
|
291 m_current(f), m_currentConsecutive(0) |
|
292 { |
|
293 } |
|
294 |
|
295 SequentialVariable::SequentialVariable(const SequentialVariable& c) |
|
296 : m_min(c.m_min), m_max(c.m_max), |
|
297 m_increment(c.m_increment->Copy()), m_consecutive(c.m_consecutive), |
|
298 m_current(c.m_current), m_currentConsecutive(c.m_currentConsecutive) |
|
299 { |
|
300 } |
|
301 |
|
302 double SequentialVariable::GetValue() |
|
303 { // Return a sequential series of values |
|
304 double r = m_current; |
|
305 if (++m_currentConsecutive == m_consecutive) |
|
306 { // Time to advance to next |
|
307 m_currentConsecutive = 0; |
|
308 m_current += m_increment->GetValue(); |
|
309 if (m_current >= m_max) |
|
310 m_current = m_min + (m_current - m_max); |
|
311 } |
|
312 return r; |
|
313 } |
|
314 |
|
315 RandomVariable* SequentialVariable::Copy() const |
|
316 { |
|
317 return new SequentialVariable(*this); |
|
318 } |
|
319 //----------------------------------------------------------------------------- |
|
320 //----------------------------------------------------------------------------- |
|
321 // ExponentialVariable methods |
|
322 ExponentialVariable::ExponentialVariable() |
|
323 : m_mean(1.0), m_bound(0) { } |
|
324 |
|
325 ExponentialVariable::ExponentialVariable(double m) |
|
326 : m_mean(m), m_bound(0) { } |
|
327 |
|
328 ExponentialVariable::ExponentialVariable(double m, double b) |
|
329 : m_mean(m), m_bound(b) { } |
|
330 |
|
331 ExponentialVariable::ExponentialVariable(const ExponentialVariable& c) |
|
332 : m_mean(c.m_mean), m_bound(c.m_bound) { } |
|
333 |
|
334 double ExponentialVariable::GetValue() |
|
335 { |
|
336 double r = -m_mean*log(m_generator->RandU01()); |
|
337 if (m_bound != 0 && r > m_bound) return m_bound; |
|
338 return r; |
|
339 } |
|
340 |
|
341 RandomVariable* ExponentialVariable::Copy() const |
|
342 { |
|
343 return new ExponentialVariable(*this); |
|
344 } |
|
345 //----------------------------------------------------------------------------- |
|
346 //----------------------------------------------------------------------------- |
|
347 // ParetoVariable methods |
|
348 ParetoVariable::ParetoVariable() |
|
349 : m_mean(1.0), m_shape(1.5), m_bound(0) { } |
|
350 |
|
351 ParetoVariable::ParetoVariable(double m) |
|
352 : m_mean(m), m_shape(1.5), m_bound(0) { } |
|
353 |
|
354 ParetoVariable::ParetoVariable(double m, double s) |
|
355 : m_mean(m), m_shape(s), m_bound(0) { } |
|
356 |
|
357 ParetoVariable::ParetoVariable(double m, double s, double b) |
|
358 : m_mean(m), m_shape(s), m_bound(b) { } |
|
359 |
|
360 ParetoVariable::ParetoVariable(const ParetoVariable& c) |
|
361 : m_mean(c.m_mean), m_shape(c.m_shape), m_bound(c.m_bound) { } |
|
362 |
|
363 double ParetoVariable::GetValue() |
|
364 { |
|
365 double scale = m_mean * ( m_shape - 1.0) / m_shape; |
|
366 double r = (scale * ( 1.0 / pow(m_generator->RandU01(), 1.0 / m_shape))); |
|
367 if (m_bound != 0 && r > m_bound) return m_bound; |
|
368 return r; |
|
369 } |
|
370 |
|
371 RandomVariable* ParetoVariable::Copy() const |
|
372 { |
|
373 return new ParetoVariable(*this); |
|
374 } |
|
375 //----------------------------------------------------------------------------- |
|
376 //----------------------------------------------------------------------------- |
|
377 // WeibullVariable methods |
|
378 WeibullVariable::WeibullVariable() : m_mean(1.0), m_alpha(1), m_bound(0) { } |
|
379 WeibullVariable::WeibullVariable(double m) |
|
380 : m_mean(m), m_alpha(1), m_bound(0) { } |
|
381 WeibullVariable::WeibullVariable(double m, double s) |
|
382 : m_mean(m), m_alpha(s), m_bound(0) { } |
|
383 WeibullVariable::WeibullVariable(double m, double s, double b) |
|
384 : m_mean(m), m_alpha(s), m_bound(b) { }; |
|
385 WeibullVariable::WeibullVariable(const WeibullVariable& c) |
|
386 : m_mean(c.m_mean), m_alpha(c.m_alpha), m_bound(c.m_bound) { } |
|
387 |
|
388 double WeibullVariable::GetValue() |
|
389 { |
|
390 double exponent = 1.0 / m_alpha; |
|
391 double r = m_mean * pow( -log(m_generator->RandU01()), exponent); |
|
392 if (m_bound != 0 && r > m_bound) return m_bound; |
|
393 return r; |
|
394 } |
|
395 |
|
396 RandomVariable* WeibullVariable::Copy() const |
|
397 { |
|
398 return new WeibullVariable(*this); |
|
399 } |
|
400 //----------------------------------------------------------------------------- |
|
401 //----------------------------------------------------------------------------- |
|
402 // NormalVariable methods |
|
403 NormalVariable::NormalVariable() |
|
404 : m_mean(0.0), m_variance(1.0), m_bound(INFINITE_VALUE), m_nextValid(false){} |
|
405 |
|
406 NormalVariable::NormalVariable(double m, double v, double b) |
|
407 : m_mean(m), m_variance(v), m_bound(b), m_nextValid(false) { } |
|
408 |
|
409 NormalVariable::NormalVariable(const NormalVariable& c) |
|
410 : m_mean(c.m_mean), m_variance(c.m_variance), m_bound(c.m_bound) { } |
|
411 |
|
412 double NormalVariable::GetValue() |
|
413 { |
|
414 if (m_nextValid) |
|
415 { // use previously generated |
|
416 m_nextValid = false; |
|
417 return m_next; |
|
418 } |
|
419 while(1) |
|
420 { // See Simulation Modeling and Analysis p. 466 (Averill Law) |
|
421 // for algorithm |
|
422 double u1 = m_generator->RandU01(); |
|
423 double u2 = m_generator->RandU01();; |
|
424 double v1 = 2 * u1 - 1; |
|
425 double v2 = 2 * u2 - 1; |
|
426 double w = v1 * v1 + v2 * v2; |
|
427 if (w <= 1.0) |
|
428 { // Got good pair |
|
429 double y = sqrt((-2 * log(w))/w); |
|
430 m_next = m_mean + v2 * y * sqrt(m_variance); |
|
431 if (fabs(m_next) > m_bound) m_next = m_bound * (m_next)/fabs(m_next); |
|
432 m_nextValid = true; |
|
433 double x1 = m_mean + v1 * y * sqrt(m_variance); |
|
434 if (fabs(x1) > m_bound) x1 = m_bound * (x1)/fabs(x1); |
|
435 return x1; |
|
436 } |
|
437 } |
|
438 } |
|
439 |
|
440 RandomVariable* NormalVariable::Copy() const |
|
441 { |
|
442 return new NormalVariable(*this); |
|
443 } |
|
444 |
|
445 //----------------------------------------------------------------------------- |
|
446 //----------------------------------------------------------------------------- |
|
447 // ValueCDF methods |
|
448 ValueCDF::ValueCDF() |
|
449 : value(0.0), cdf(0.0){ } |
|
450 ValueCDF::ValueCDF(double v, double c) |
|
451 : value(v), cdf(c) { } |
|
452 ValueCDF::ValueCDF(const ValueCDF& c) |
|
453 : value(c.value), cdf(c.cdf) { } |
|
454 |
|
455 //----------------------------------------------------------------------------- |
|
456 //----------------------------------------------------------------------------- |
|
457 // EmpiricalVariable methods |
|
458 EmpiricalVariable::EmpiricalVariable() |
|
459 : validated(false) { } |
|
460 |
|
461 EmpiricalVariable::EmpiricalVariable(const EmpiricalVariable& c) |
|
462 : validated(c.validated), emp(c.emp) { } |
|
463 |
|
464 EmpiricalVariable::~EmpiricalVariable() { } |
|
465 |
|
466 double EmpiricalVariable::GetValue() |
|
467 { // Return a value from the empirical distribution |
|
468 // This code based (loosely) on code by Bruce Mah (Thanks Bruce!) |
|
469 if (emp.size() == 0) return 0.0; // HuH? No empirical data |
|
470 if (!validated) Validate(); // Insure in non-decreasing |
|
471 double r = m_generator->RandU01(); |
|
472 if (r <= emp.front().cdf)return emp.front().value; // Less than first |
|
473 if (r >= emp.back().cdf) return emp.back().value; // Greater than last |
|
474 // Binary search |
|
475 std::vector<ValueCDF>::size_type bottom = 0; |
|
476 std::vector<ValueCDF>::size_type top = emp.size() - 1; |
|
477 while(1) |
|
478 { |
|
479 std::vector<ValueCDF>::size_type c = (top + bottom) / 2; |
|
480 if (r >= emp[c].cdf && r < emp[c+1].cdf) |
|
481 { // Found it |
|
482 return Interpolate(emp[c].cdf, emp[c+1].cdf, |
|
483 emp[c].value, emp[c+1].value, |
|
484 r); |
|
485 } |
|
486 // Not here, adjust bounds |
|
487 if (r < emp[c].cdf) top = c - 1; |
|
488 else bottom = c + 1; |
|
489 } |
|
490 } |
|
491 |
|
492 RandomVariable* EmpiricalVariable::Copy() const |
|
493 { |
|
494 return new EmpiricalVariable(*this); |
|
495 } |
|
496 |
|
497 void EmpiricalVariable::CDF(double v, double c) |
|
498 { // Add a new empirical datapoint to the empirical cdf |
|
499 // NOTE. These MUST be inserted in non-decreasing order |
|
500 emp.push_back(ValueCDF(v, c)); |
|
501 } |
|
502 |
|
503 void EmpiricalVariable::Validate() |
|
504 { |
|
505 ValueCDF prior; |
|
506 for (std::vector<ValueCDF>::size_type i = 0; i < emp.size(); ++i) |
|
507 { |
|
508 ValueCDF& current = emp[i]; |
|
509 if (current.value < prior.value || current.cdf < prior.cdf) |
|
510 { // Error |
|
511 cout << "Empirical Dist error," |
|
512 << " current value " << current.value |
|
513 << " prior value " << prior.value |
|
514 << " current cdf " << current.cdf |
|
515 << " prior cdf " << prior.cdf << endl; |
|
516 NS_FATAL_ERROR("Empirical Dist error"); |
|
517 } |
|
518 prior = current; |
|
519 } |
|
520 validated = true; |
|
521 } |
|
522 |
|
523 double EmpiricalVariable::Interpolate(double c1, double c2, |
|
524 double v1, double v2, double r) |
|
525 { // Interpolate random value in range [v1..v2) based on [c1 .. r .. c2) |
|
526 return (v1 + ((v2 - v1) / (c2 - c1)) * (r - c1)); |
|
527 } |
|
528 |
|
529 //----------------------------------------------------------------------------- |
|
530 //----------------------------------------------------------------------------- |
|
531 // Integer EmpiricalVariable methods |
|
532 IntEmpiricalVariable::IntEmpiricalVariable() { } |
|
533 |
|
534 uint32_t IntEmpiricalVariable::GetIntValue() |
|
535 { |
|
536 return (uint32_t)GetValue(); |
|
537 } |
|
538 |
|
539 RandomVariable* IntEmpiricalVariable::Copy() const |
|
540 { |
|
541 return new IntEmpiricalVariable(*this); |
|
542 } |
|
543 |
|
544 |
|
545 double IntEmpiricalVariable::Interpolate(double c1, double c2, |
|
546 double v1, double v2, double r) |
|
547 { // Interpolate random value in range [v1..v2) based on [c1 .. r .. c2) |
|
548 return ceil(v1 + ((v2 - v1) / (c2 - c1)) * (r - c1)); |
|
549 } |
|
550 |
|
551 |
|
552 //----------------------------------------------------------------------------- |
|
553 //----------------------------------------------------------------------------- |
|
554 // DeterministicVariable |
|
555 DeterministicVariable::DeterministicVariable(double* d, uint32_t c) |
|
556 : count(c), next(c), data(d) |
|
557 { // Nothing else needed |
|
558 } |
|
559 |
|
560 DeterministicVariable::~DeterministicVariable() { } |
|
561 |
|
562 double DeterministicVariable::GetValue() |
|
563 { |
|
564 if (next == count) next = 0; |
|
565 return data[next++]; |
|
566 } |
|
567 |
|
568 RandomVariable* DeterministicVariable::Copy() const |
|
569 { |
|
570 return new DeterministicVariable(*this); |
|
571 } |
|
572 |
|
573 }//namespace ns3 |
|
574 |