/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2011 CTTC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Nicola Baldo <nbaldo@cttc.es>
*/
#include <ns3/log.h>
#include <ns3/double.h>
#include <cmath>
#include "antenna-model.h"
#include "cosine-antenna-model.h"
NS_LOG_COMPONENT_DEFINE ("CosineAntennaModel");
namespace ns3 {
NS_OBJECT_ENSURE_REGISTERED (CosineAntennaModel);
TypeId
CosineAntennaModel::GetTypeId ()
{
static TypeId tid = TypeId ("ns3::CosineAntennaModel")
.SetParent<AntennaModel> ()
.AddConstructor<CosineAntennaModel> ()
.AddAttribute ("Beamwidth",
"The 3dB beamwidth (degrees)",
DoubleValue (60),
MakeDoubleAccessor (&CosineAntennaModel::SetBeamwidth,
&CosineAntennaModel::GetBeamwidth),
MakeDoubleChecker<double> (0, 180))
.AddAttribute ("Orientation",
"The angle (degrees) that expresses the orientation of the antenna on the x-y plane relative to the x axis",
DoubleValue (0.0),
MakeDoubleAccessor (&CosineAntennaModel::SetOrientation,
&CosineAntennaModel::GetOrientation),
MakeDoubleChecker<double> (-360, 360))
.AddAttribute ("MaxGain",
"The gain (dB) at the antenna boresight (the direction of maximum gain)",
DoubleValue (0.0),
MakeDoubleAccessor (&CosineAntennaModel::m_maxGain),
MakeDoubleChecker<double> ())
;
return tid;
}
void
CosineAntennaModel::SetBeamwidth (double beamwidthDegrees)
{
NS_LOG_FUNCTION (this << beamwidthDegrees);
m_beamwidthRadians = DegreesToRadians (beamwidthDegrees);
m_exponent = -3.0 / (20 * std::log10 (std::cos (m_beamwidthRadians / 4.0)));
NS_LOG_LOGIC (this << " m_exponent = " << m_exponent);
}
double
CosineAntennaModel::GetBeamwidth () const
{
return RadiansToDegrees (m_beamwidthRadians);
}
void
CosineAntennaModel::SetOrientation (double orientationDegrees)
{
NS_LOG_FUNCTION (this << orientationDegrees);
m_orientationRadians = DegreesToRadians (orientationDegrees);
}
double
CosineAntennaModel::GetOrientation () const
{
return RadiansToDegrees (m_orientationRadians);
}
double
CosineAntennaModel::GetGainDb (Angles a)
{
NS_LOG_FUNCTION (this << a);
// azimuth angle w.r.t. the reference system of the antenna
double phi = a.phi - m_orientationRadians;
// make sure phi is in (-pi, pi]
while (phi <= -M_PI)
{
phi += M_PI+M_PI;
}
while (phi > M_PI)
{
phi -= M_PI+M_PI;
}
NS_LOG_LOGIC ("phi = " << phi );
// element factor: amplitude gain of a single antenna element in linear units
double ef = std::pow (std::cos (phi / 2.0), m_exponent);
// the array factor is not considered. Note that if we did consider
// the array factor, the actual beamwidth would change, and in
// particular it would be different from the one specified by the
// user. Hence it is not desirable to use the array factor, for the
// ease of use of this model.
double gainDb = 20 * std::log10 (ef);
NS_LOG_LOGIC ("gain = " << gainDb << " + " << m_maxGain << " dB");
return gainDb + m_maxGain;
}
}