# HG changeset patch # User Vedran Mileti? # Date 1305466843 14400 # Node ID 440bbee145f096193abcdd67fe6c16de62935d89 # Parent a6da68275fa9bf103e2a976be5e18c02dd3e1adb fix TeX formulas after doxygen change diff -r a6da68275fa9 -r 440bbee145f0 src/propagation/model/jakes-propagation-loss-model.h --- a/src/propagation/model/jakes-propagation-loss-model.h Sun May 15 09:28:09 2011 -0400 +++ b/src/propagation/model/jakes-propagation-loss-model.h Sun May 15 09:40:43 2011 -0400 @@ -41,22 +41,22 @@ * \f[ u_s(t) = \frac{2}{\sqrt{N}}\sum_{n=0}^{M}b_n\cos(\omega_n t+\phi_n)\f] * where * \f[ a_n=\left \{ \begin{array}{ll} - * \sqrt{2}\cos\beta_0 & n=0 \ \ + * \sqrt{2}\cos\beta_0 & n=0 \\ * 2\cos\beta_n & n=1,2,\ldots,M * \end{array} * \right .\f] * \f[ b_n=\left \{ \begin{array}{ll} - * \sqrt{2}\sin\beta_0 & n=0 \ \ + * \sqrt{2}\sin\beta_0 & n=0 \\ * 2\sin\beta_n & n=1,2,\ldots,M * \end{array} * \right .\f] * \f[ \beta_n=\left \{ \begin{array}{ll} - * \frac{\pi}{4} & n=0 \ \ + * \frac{\pi}{4} & n=0 \\ * \frac{\pi n}{M} & n=1,2,\ldots,M * \end{array} * \right .\f] * \f[ \omega_n=\left \{ \begin{array}{ll} - * 2\pi f_d & n=0 \ \ + * 2\pi f_d & n=0 \\ * 2\pi f_d \cos\frac{2\pi n}{N} & n=1,2,\ldots,M * \end{array} * \right .\f] diff -r a6da68275fa9 -r 440bbee145f0 src/propagation/model/propagation-loss-model.h --- a/src/propagation/model/propagation-loss-model.h Sun May 15 09:28:09 2011 -0400 +++ b/src/propagation/model/propagation-loss-model.h Sun May 15 09:40:43 2011 -0400 @@ -353,9 +353,9 @@ * * \f[\displaystyle L = \begin{cases} -0 & d < d_0 \ \ -L_0 + 10 \cdot n_0 \log_{10}(\frac{d}{d_0}) & d_0 \leq d < d_1 \ \ -L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d}{d_1}) & d_1 \leq d < d_2 \ \ +0 & d < d_0 \\ +L_0 + 10 \cdot n_0 \log_{10}(\frac{d}{d_0}) & d_0 \leq d < d_1 \\ +L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d}{d_1}) & d_1 \leq d < d_2 \\ L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d_2}{d_1}) + 10 \cdot n_2 \log_{10}(\frac{d}{d_2})& d_2 \leq d \end{cases}\f] *