/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2009 The Boeing Company
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "ns3/log.h"
#include "ns3/abort.h"
#include "ns3/test.h"
#include "ns3/pcap-file.h"
#include "ns3/config.h"
#include "ns3/string.h"
#include "ns3/uinteger.h"
#include "ns3/double.h"
#include "ns3/data-rate.h"
#include "ns3/inet-socket-address.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/tcp-socket-factory.h"
#include "ns3/yans-wifi-helper.h"
#include "ns3/propagation-loss-model.h"
#include "ns3/propagation-delay-model.h"
#include "ns3/yans-wifi-channel.h"
#include "ns3/yans-wifi-phy.h"
#include "ns3/wifi-net-device.h"
#include "ns3/mobility-helper.h"
#include "ns3/constant-position-mobility-model.h"
#include "ns3/nqos-wifi-mac-helper.h"
#include "ns3/simulator.h"
using namespace ns3;
NS_LOG_COMPONENT_DEFINE ("PropagationLossModelsTest");
// ===========================================================================
// This is a simple test to validate propagation loss models of ns-3 wifi.
// See the chapter in the ns-3 testing and validation guide for more detail
// ===========================================================================
//
class FriisPropagationLossModelTestCase : public TestCase
{
public:
FriisPropagationLossModelTestCase ();
virtual ~FriisPropagationLossModelTestCase ();
private:
virtual bool DoRun (void);
typedef struct {
Vector m_position;
double m_pt; // dBm
double m_pr; // W
double m_tolerance;
} TestVector;
TestVectors<TestVector> m_testVectors;
};
FriisPropagationLossModelTestCase::FriisPropagationLossModelTestCase ()
: TestCase ("Check to see that the ns-3 Friis propagation loss model provides correct received power"), m_testVectors ()
{
}
FriisPropagationLossModelTestCase::~FriisPropagationLossModelTestCase ()
{
}
bool
FriisPropagationLossModelTestCase::DoRun (void)
{
// The ns-3 testing manual gives more background on the values selected
// for this test. First, set a few defaults.
// wavelength at 2.4 GHz is 0.125m
Config::SetDefault ("ns3::FriisPropagationLossModel::Lambda", DoubleValue (0.125));
Config::SetDefault ("ns3::FriisPropagationLossModel::SystemLoss", DoubleValue (1.0));
// Select a reference transmit power
// Pt = 10^(17.0206/10)/10^3 = .05035702 W
double txPowerW = 0.05035702;
double txPowerdBm = 10 * log10 (txPowerW) + 30;
//
// We want to test the propagation loss model calculations at a few chosen
// distances and compare the results to those we have manually calculated
// according to the model documentation. The model reference specifies,
// for instance, that the received power at 100m according to the provided
// input power will be 4.98265e-10 W. Since this value specifies the power
// to 1e-15 significance, we test the ns-3 calculated value for agreement
// within 5e-16.
//
TestVector testVector;
testVector.m_position = Vector (100, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 4.98265e-10;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
testVector.m_position = Vector (500, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 1.99306e-11;
testVector.m_tolerance = 5e-17;
m_testVectors.Add (testVector);
testVector.m_position = Vector (1000, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 4.98265e-12;
testVector.m_tolerance = 5e-18;
m_testVectors.Add (testVector);
testVector.m_position = Vector (2000, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 1.24566e-12;
testVector.m_tolerance = 5e-18;
m_testVectors.Add (testVector);
// Now, check that the received power values are expected
Ptr<MobilityModel> a = CreateObject<ConstantPositionMobilityModel> ();
a->SetPosition (Vector (0,0,0));
Ptr<MobilityModel> b = CreateObject<ConstantPositionMobilityModel> ();
Ptr<FriisPropagationLossModel> lossModel = CreateObject<FriisPropagationLossModel> ();
for (uint32_t i = 0; i < m_testVectors.GetN (); ++i)
{
testVector = m_testVectors.Get (i);
b->SetPosition (testVector.m_position);
double resultdBm = lossModel->CalcRxPower (testVector.m_pt, a, b);
double resultW = pow (10.0, resultdBm/10.0)/1000;
NS_TEST_EXPECT_MSG_EQ_TOL (resultW, testVector.m_pr, testVector.m_tolerance, "Got unexpected rcv power");
}
return GetErrorStatus ();
}
// Added for Two-Ray Ground Model - tomhewer@mac.com
class TwoRayGroundPropagationLossModelTestCase : public TestCase
{
public:
TwoRayGroundPropagationLossModelTestCase ();
virtual ~TwoRayGroundPropagationLossModelTestCase ();
private:
virtual bool DoRun (void);
typedef struct
{
Vector m_position;
double m_pt; // dBm
double m_pr; // W
double m_tolerance;
} TestVector;
TestVectors<TestVector> m_testVectors;
};
TwoRayGroundPropagationLossModelTestCase::TwoRayGroundPropagationLossModelTestCase ()
: TestCase ("Check to see that the ns-3 TwoRayGround propagation loss model provides correct received power"),
m_testVectors ()
{
}
TwoRayGroundPropagationLossModelTestCase::~TwoRayGroundPropagationLossModelTestCase ()
{
}
bool
TwoRayGroundPropagationLossModelTestCase::DoRun (void)
{
// wavelength at 2.4 GHz is 0.125m
Config::SetDefault ("ns3::TwoRayGroundPropagationLossModel::Lambda", DoubleValue (0.125));
Config::SetDefault ("ns3::TwoRayGroundPropagationLossModel::SystemLoss", DoubleValue (1.0));
// set antenna height to 1.5m above z coordinate
Config::SetDefault ("ns3::TwoRayGroundPropagationLossModel::HeightAboveZ", DoubleValue (1.5));
// Select a reference transmit power of 17.0206 dBm
// Pt = 10^(17.0206/10)/10^3 = .05035702 W
double txPowerW = 0.05035702;
double txPowerdBm = 10 * log10 (txPowerW) + 30;
//
// As with the Friis tests above, we want to test the propagation loss
// model calculations at a few chosen distances and compare the results
// to those we can manually calculate. Let us test the ns-3 calculated
// value for agreement to be within 5e-16, as above.
//
TestVector testVector;
// Below the Crossover distance use Friis so this test should be the same as that above
// Crossover = (4 * PI * TxAntennaHeight * RxAntennaHeight) / Lamdba
// Crossover = (4 * PI * 1.5 * 1.5) / 0.125 = 226.1946m
testVector.m_position = Vector (100, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 4.98265e-10;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
// These values are above the crossover distance and therefore use the Two Ray calculation
testVector.m_position = Vector (500, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 4.07891862e-12;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
testVector.m_position = Vector (1000, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 2.5493241375e-13;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
testVector.m_position = Vector (2000, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 1.593327585938e-14;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
// Repeat the tests for non-zero z coordinates
// Pr = (0.05035702 * (1.5*1.5) * (2.5*2.5)) / (500*500*500*500) = 1.13303295e-11
// dCross = (4 * pi * 1.5 * 2.5) / 0.125 = 376.99m
testVector.m_position = Vector (500, 0, 1);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 1.13303295e-11;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
// Pr = (0.05035702 * (1.5*1.5) * (5.5*5.5)) / (1000*1000*1000*1000) = 3.42742467375e-12
// dCross = (4 * pi * 1.5 * 5.5) / 0.125 = 829.38m
testVector.m_position = Vector (1000, 0, 4);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 3.42742467375e-12;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
// Pr = (0.05035702 * (1.5*1.5) * (11.5*11.5)) / (2000*2000*2000*2000) = 9.36522547734e-13
// dCross = (4 * pi * 1.5 * 11.5) / 0.125 = 1734.15m
testVector.m_position = Vector (2000, 0, 10);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 9.36522547734e-13;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
// Now, check that the received power values are expected
Ptr<MobilityModel> a = CreateObject<ConstantPositionMobilityModel> ();
a->SetPosition (Vector (0,0,0));
Ptr<MobilityModel> b = CreateObject<ConstantPositionMobilityModel> ();
Ptr<TwoRayGroundPropagationLossModel> lossModel = CreateObject<TwoRayGroundPropagationLossModel> ();
for (uint32_t i = 0; i < m_testVectors.GetN (); ++i)
{
testVector = m_testVectors.Get (i);
b->SetPosition (testVector.m_position);
double resultdBm = lossModel->CalcRxPower (testVector.m_pt, a, b);
double resultW = pow (10.0, resultdBm / 10.0) / 1000;
NS_TEST_EXPECT_MSG_EQ_TOL (resultW, testVector.m_pr, testVector.m_tolerance, "Got unexpected rcv power");
}
return GetErrorStatus ();
}
class LogDistancePropagationLossModelTestCase : public TestCase
{
public:
LogDistancePropagationLossModelTestCase ();
virtual ~LogDistancePropagationLossModelTestCase ();
private:
virtual bool DoRun (void);
typedef struct {
Vector m_position;
double m_pt; // dBm
double m_pr; // W
double m_tolerance;
} TestVector;
TestVectors<TestVector> m_testVectors;
};
LogDistancePropagationLossModelTestCase::LogDistancePropagationLossModelTestCase ()
: TestCase ("Check to see that the ns-3 Log Distance propagation loss model provides correct received power"), m_testVectors ()
{
}
LogDistancePropagationLossModelTestCase::~LogDistancePropagationLossModelTestCase ()
{
}
bool
LogDistancePropagationLossModelTestCase::DoRun (void)
{
// reference loss at 2.4 GHz is 40.045997
Config::SetDefault ("ns3::LogDistancePropagationLossModel::ReferenceLoss", DoubleValue (40.045997));
Config::SetDefault ("ns3::LogDistancePropagationLossModel::Exponent", DoubleValue (3));
// Select a reference transmit power
// Pt = 10^(17.0206/10)/10^3 = .05035702 W
double txPowerW = 0.05035702;
double txPowerdBm = 10 * log10 (txPowerW) + 30;
//
// We want to test the propagation loss model calculations at a few chosen
// distances and compare the results to those we have manually calculated
// according to the model documentation. The following "TestVector" objects
// will drive the test.
//
TestVector testVector;
testVector.m_position = Vector (10, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 4.98265e-9;
testVector.m_tolerance = 5e-15;
m_testVectors.Add (testVector);
testVector.m_position = Vector (20, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 6.22831e-10;
testVector.m_tolerance = 5e-16;
m_testVectors.Add (testVector);
testVector.m_position = Vector (40, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 7.78539e-11;
testVector.m_tolerance = 5e-17;
m_testVectors.Add (testVector);
testVector.m_position = Vector (80, 0, 0);
testVector.m_pt = txPowerdBm;
testVector.m_pr = 9.73173e-12;
testVector.m_tolerance = 5e-17;
m_testVectors.Add (testVector);
Ptr<MobilityModel> a = CreateObject<ConstantPositionMobilityModel> ();
a->SetPosition (Vector (0,0,0));
Ptr<MobilityModel> b = CreateObject<ConstantPositionMobilityModel> ();
Ptr<LogDistancePropagationLossModel> lossModel = CreateObject<LogDistancePropagationLossModel> ();
for (uint32_t i = 0; i < m_testVectors.GetN (); ++i)
{
testVector = m_testVectors.Get (i);
b->SetPosition (testVector.m_position);
double resultdBm = lossModel->CalcRxPower (testVector.m_pt, a, b);
double resultW = pow (10.0, resultdBm/10.0)/1000;
NS_TEST_EXPECT_MSG_EQ_TOL (resultW, testVector.m_pr, testVector.m_tolerance, "Got unexpected rcv power");
}
return GetErrorStatus ();
}
struct MatrixPropagationLossModelTestCase : public TestCase
{
MatrixPropagationLossModelTestCase () : TestCase ("Test MatrixPropagationLossModel") {}
bool DoRun ()
{
Ptr<Node> n[3];
Ptr<MobilityModel> m[3];
for (int i = 0; i < 3; ++i)
{
n[i] = CreateObject<Node> ();
m[i] = CreateObject<ConstantPositionMobilityModel> ();
n[i]->AggregateObject (m[i]);
}
MatrixPropagationLossModel loss;
// no loss by default
loss.SetDefaultLoss (0);
// -10 dB for 0 -> 1 and 1 -> 0
loss.SetLoss (n[0], n[1], 10);
// -30 dB from 0 to 2 and -100 dB from 2 to 0
loss.SetLoss (n[0], n[2], 30, /*symmetric = */false);
loss.SetLoss (n[2], n[0], 100, /*symmetric = */false);
// default from 1 to 2
NS_TEST_ASSERT_MSG_EQ (loss.CalcRxPower (0, m[0], m[1]), -10, "Loss 0 -> 1 incorrect");
NS_TEST_ASSERT_MSG_EQ (loss.CalcRxPower (0, m[1], m[0]), -10, "Loss 1 -> 0 incorrect");
NS_TEST_ASSERT_MSG_EQ (loss.CalcRxPower (0, m[0], m[2]), -30, "Loss 0 -> 2 incorrect");
NS_TEST_ASSERT_MSG_EQ (loss.CalcRxPower (0, m[2], m[0]), -100, "Loss 2 -> 0 incorrect");
NS_TEST_ASSERT_MSG_EQ (loss.CalcRxPower (0, m[1], m[2]), 0, "Loss 1 -> 2 incorrect");
NS_TEST_ASSERT_MSG_EQ (loss.CalcRxPower (0, m[2], m[1]), 0, "Loss 2 -> 1 incorrect");
return GetErrorStatus ();
}
};
class PropagationLossModelsTestSuite : public TestSuite
{
public:
PropagationLossModelsTestSuite ();
};
PropagationLossModelsTestSuite::PropagationLossModelsTestSuite ()
: TestSuite ("propagation-loss-model", UNIT)
{
AddTestCase (new FriisPropagationLossModelTestCase);
AddTestCase (new TwoRayGroundPropagationLossModelTestCase);
AddTestCase (new LogDistancePropagationLossModelTestCase);
AddTestCase (new MatrixPropagationLossModelTestCase);
}
PropagationLossModelsTestSuite WifiPropagationLossModelsTestSuite;