Update Phy Layer for managing different frames for different set of channels (data vs. ctrl and srs)
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Marco Miozzo <marco.miozzo@cttc.es>
*/
#include <ns3/log.h>
#include <ns3/pointer.h>
#include <ns3/simulator.h>
#include <ns3/lte-amc.h>
#include <ns3/pf-ff-mac-scheduler.h>
NS_LOG_COMPONENT_DEFINE ("PfFfMacScheduler");
namespace ns3 {
int PfType0AllocationRbg[4] = {
10, // RGB size 1
26, // RGB size 2
63, // RGB size 3
110 // RGB size 4
}; // see table 7.1.6.1-1 of 36.213
NS_OBJECT_ENSURE_REGISTERED (PfFfMacScheduler);
class PfSchedulerMemberCschedSapProvider : public FfMacCschedSapProvider
{
public:
PfSchedulerMemberCschedSapProvider (PfFfMacScheduler* scheduler);
// inherited from FfMacCschedSapProvider
virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
private:
PfSchedulerMemberCschedSapProvider ();
PfFfMacScheduler* m_scheduler;
};
PfSchedulerMemberCschedSapProvider::PfSchedulerMemberCschedSapProvider ()
{
}
PfSchedulerMemberCschedSapProvider::PfSchedulerMemberCschedSapProvider (PfFfMacScheduler* scheduler) : m_scheduler (scheduler)
{
}
void
PfSchedulerMemberCschedSapProvider::CschedCellConfigReq (const struct CschedCellConfigReqParameters& params)
{
m_scheduler->DoCschedCellConfigReq (params);
}
void
PfSchedulerMemberCschedSapProvider::CschedUeConfigReq (const struct CschedUeConfigReqParameters& params)
{
m_scheduler->DoCschedUeConfigReq (params);
}
void
PfSchedulerMemberCschedSapProvider::CschedLcConfigReq (const struct CschedLcConfigReqParameters& params)
{
m_scheduler->DoCschedLcConfigReq (params);
}
void
PfSchedulerMemberCschedSapProvider::CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params)
{
m_scheduler->DoCschedLcReleaseReq (params);
}
void
PfSchedulerMemberCschedSapProvider::CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params)
{
m_scheduler->DoCschedUeReleaseReq (params);
}
class PfSchedulerMemberSchedSapProvider : public FfMacSchedSapProvider
{
public:
PfSchedulerMemberSchedSapProvider (PfFfMacScheduler* scheduler);
// inherited from FfMacSchedSapProvider
virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
private:
PfSchedulerMemberSchedSapProvider ();
PfFfMacScheduler* m_scheduler;
};
PfSchedulerMemberSchedSapProvider::PfSchedulerMemberSchedSapProvider ()
{
}
PfSchedulerMemberSchedSapProvider::PfSchedulerMemberSchedSapProvider (PfFfMacScheduler* scheduler)
: m_scheduler (scheduler)
{
}
void
PfSchedulerMemberSchedSapProvider::SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params)
{
m_scheduler->DoSchedDlRlcBufferReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params)
{
m_scheduler->DoSchedDlPagingBufferReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params)
{
m_scheduler->DoSchedDlMacBufferReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params)
{
m_scheduler->DoSchedDlTriggerReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params)
{
m_scheduler->DoSchedDlRachInfoReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params)
{
m_scheduler->DoSchedDlCqiInfoReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params)
{
m_scheduler->DoSchedUlTriggerReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params)
{
m_scheduler->DoSchedUlNoiseInterferenceReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params)
{
m_scheduler->DoSchedUlSrInfoReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params)
{
m_scheduler->DoSchedUlMacCtrlInfoReq (params);
}
void
PfSchedulerMemberSchedSapProvider::SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params)
{
m_scheduler->DoSchedUlCqiInfoReq (params);
}
PfFfMacScheduler::PfFfMacScheduler ()
: m_cschedSapUser (0),
m_schedSapUser (0),
m_timeWindow (99.0),
m_nextRntiUl (0)
{
m_amc = CreateObject <LteAmc> ();
m_cschedSapProvider = new PfSchedulerMemberCschedSapProvider (this);
m_schedSapProvider = new PfSchedulerMemberSchedSapProvider (this);
}
PfFfMacScheduler::~PfFfMacScheduler ()
{
NS_LOG_FUNCTION (this);
}
void
PfFfMacScheduler::DoDispose ()
{
NS_LOG_FUNCTION (this);
delete m_cschedSapProvider;
delete m_schedSapProvider;
}
TypeId
PfFfMacScheduler::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::PfFfMacScheduler")
.SetParent<FfMacScheduler> ()
.AddConstructor<PfFfMacScheduler> ()
.AddAttribute ("CqiTimerThreshold",
"The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
UintegerValue (1000),
MakeUintegerAccessor (&PfFfMacScheduler::m_cqiTimersThreshold),
MakeUintegerChecker<uint32_t> ())
;
return tid;
}
void
PfFfMacScheduler::SetFfMacCschedSapUser (FfMacCschedSapUser* s)
{
m_cschedSapUser = s;
}
void
PfFfMacScheduler::SetFfMacSchedSapUser (FfMacSchedSapUser* s)
{
m_schedSapUser = s;
}
FfMacCschedSapProvider*
PfFfMacScheduler::GetFfMacCschedSapProvider ()
{
return m_cschedSapProvider;
}
FfMacSchedSapProvider*
PfFfMacScheduler::GetFfMacSchedSapProvider ()
{
return m_schedSapProvider;
}
void
PfFfMacScheduler::DoCschedCellConfigReq (const struct FfMacCschedSapProvider::CschedCellConfigReqParameters& params)
{
NS_LOG_FUNCTION (this);
// Read the subset of parameters used
m_cschedCellConfig = params;
FfMacCschedSapUser::CschedUeConfigCnfParameters cnf;
cnf.m_result = SUCCESS;
m_cschedSapUser->CschedUeConfigCnf (cnf);
return;
}
void
PfFfMacScheduler::DoCschedUeConfigReq (const struct FfMacCschedSapProvider::CschedUeConfigReqParameters& params)
{
NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
if (it==m_uesTxMode.end ())
{
m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
}
else
{
(*it).second = params.m_transmissionMode;
}
return;
return;
}
void
PfFfMacScheduler::DoCschedLcConfigReq (const struct FfMacCschedSapProvider::CschedLcConfigReqParameters& params)
{
NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
std::map <uint16_t, pfsFlowPerf_t>::iterator it;
for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
{
it = m_flowStatsDl.find (params.m_rnti);
if (it == m_flowStatsDl.end ())
{
pfsFlowPerf_t flowStatsDl;
flowStatsDl.flowStart = Simulator::Now ();
flowStatsDl.totalBytesTransmitted = 0;
flowStatsDl.lastTtiBytesTrasmitted = 0;
flowStatsDl.lastAveragedThroughput = 1;
m_flowStatsDl.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStatsDl));
pfsFlowPerf_t flowStatsUl;
flowStatsUl.flowStart = Simulator::Now ();
flowStatsUl.totalBytesTransmitted = 0;
flowStatsUl.lastTtiBytesTrasmitted = 0;
flowStatsUl.lastAveragedThroughput = 1;
m_flowStatsUl.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStatsUl));
}
else
{
NS_LOG_ERROR ("RNTI already exists");
}
}
return;
}
void
PfFfMacScheduler::DoCschedLcReleaseReq (const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
PfFfMacScheduler::DoCschedUeReleaseReq (const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
PfFfMacScheduler::DoSchedDlRlcBufferReq (const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters& params)
{
NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
// API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
it = m_rlcBufferReq.find (flow);
if (it == m_rlcBufferReq.end ())
{
m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
}
else
{
(*it).second = params;
}
return;
}
void
PfFfMacScheduler::DoSchedDlPagingBufferReq (const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
PfFfMacScheduler::DoSchedDlMacBufferReq (const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
int
PfFfMacScheduler::GetRbgSize (int dlbandwidth)
{
for (int i = 0; i < 4; i++)
{
if (dlbandwidth < PfType0AllocationRbg[i])
{
return (i + 1);
}
}
return (-1);
}
int
PfFfMacScheduler::LcActivePerFlow (uint16_t rnti)
{
std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
int lcActive = 0;
for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
{
if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
|| ((*it).second.m_rlcRetransmissionQueueSize > 0)
|| ((*it).second.m_rlcStatusPduSize > 0) ))
{
lcActive++;
}
if ((*it).first.m_rnti > rnti)
{
break;
}
}
return (lcActive);
}
void
PfFfMacScheduler::DoSchedDlTriggerReq (const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters& params)
{
NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
// API generated by RLC for triggering the scheduling of a DL subframe
// evaluate the relative channel quality indicator for each UE per each RBG
// (since we are using allocation type 0 the small unit of allocation is RBG)
// Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
RefreshDlCqiMaps ();
int rbgSize = GetRbgSize (m_cschedCellConfig.m_dlBandwidth);
int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
std::map <uint16_t, std::vector <uint16_t> > allocationMap;
for (int i = 0; i < rbgNum; i++)
{
// NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
std::map <uint16_t, pfsFlowPerf_t>::iterator it;
std::map <uint16_t, pfsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
double rcqiMax = 0.0;
for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
{
std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
itCqi = m_a30CqiRxed.find ((*it).first);
std::map <uint16_t,uint8_t>::iterator itTxMode;
itTxMode = m_uesTxMode.find ((*it).first);
if (itTxMode == m_uesTxMode.end())
{
NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
}
int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
std::vector <uint8_t> sbCqi;
if (itCqi == m_a30CqiRxed.end ())
{
// NS_LOG_DEBUG (this << " No DL-CQI for this UE " << (*it).first);
for (uint8_t k = 0; k < nLayer; k++)
{
sbCqi.push_back (1); // start with lowest value
}
}
else
{
sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
// NS_LOG_INFO (this << " CQI " << (uint32_t)cqi);
}
uint8_t cqi1 = sbCqi.at(0);
uint8_t cqi2 = 1;
if (sbCqi.size () > 1)
{
cqi2 = sbCqi.at(1);
}
if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
{
// NS_LOG_DEBUG (this << " LC active " << LcActivePerFlow ((*it).first));
if (LcActivePerFlow ((*it).first) > 0)
{
// this UE has data to transmit
double achievableRate = 0.0;
for (uint8_t k = 0; k < nLayer; k++)
{
uint8_t mcs = 0;
if (sbCqi.size () > k)
{
mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
}
else
{
// no info on this subband -> worst MCS
mcs = 0;
}
achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, 1) / 8) / 0.001); // = TB size / TTI
}
double rcqi = achievableRate / (*it).second.lastAveragedThroughput;
// NS_LOG_DEBUG (this << " RNTI " << (*it).first << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " avgThr " << (*it).second.lastAveragedThroughput << " RCQI " << rcqi);
if (rcqi > rcqiMax)
{
rcqiMax = rcqi;
itMax = it;
}
}
} // end if cqi
} // end for m_rlcBufferReq
if (itMax == m_flowStatsDl.end ())
{
// no UE available for this RB
NS_LOG_DEBUG (this << " no UE found");
}
else
{
std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
itMap = allocationMap.find ((*itMax).first);
if (itMap == allocationMap.end ())
{
// insert new element
std::vector <uint16_t> tempMap;
tempMap.push_back (i);
allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
}
else
{
(*itMap).second.push_back (i);
}
// NS_LOG_DEBUG (this << " UE assigned " << (*itMax).first);
}
} // end for RBGs
// reset TTI stats of users
std::map <uint16_t, pfsFlowPerf_t>::iterator itStats;
for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
{
(*itStats).second.lastTtiBytesTrasmitted = 0;
}
// generate the transmission opportunities by grouping the RBGs of the same RNTI and
// creating the correspondent DCIs
FfMacSchedSapUser::SchedDlConfigIndParameters ret;
std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
while (itMap != allocationMap.end ())
{
// create new BuildDataListElement_s for this LC
BuildDataListElement_s newEl;
newEl.m_rnti = (*itMap).first;
// create the DlDciListElement_s
DlDciListElement_s newDci;
std::vector <struct RlcPduListElement_s> newRlcPduLe;
newDci.m_rnti = (*itMap).first;
uint16_t lcActives = LcActivePerFlow ((*itMap).first);
// NS_LOG_DEBUG (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
uint16_t RgbPerRnti = (*itMap).second.size ();
std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
itCqi = m_a30CqiRxed.find ((*itMap).first);
std::map <uint16_t,uint8_t>::iterator itTxMode;
itTxMode = m_uesTxMode.find ((*itMap).first);
if (itTxMode == m_uesTxMode.end())
{
NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
}
int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
std::vector <uint8_t> worstCqi (2, 15);
if (itCqi != m_a30CqiRxed.end ())
{
for (uint16_t k = 0; k < (*itMap).second.size (); k++)
{
if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
{
// NS_LOG_DEBUG (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
for (uint8_t j = 0; j < nLayer; j++)
{
if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size ()> j)
{
if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
{
worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
}
}
else
{
// no CQI for this layer of this suband -> worst one
worstCqi.at (j) = 1;
}
}
}
else
{
for (uint8_t j = 0; j < nLayer; j++)
{
worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
}
}
}
}
else
{
for (uint8_t j = 0; j < nLayer; j++)
{
worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
}
}
// NS_LOG_DEBUG (this << " CQI " << (uint16_t)worstCqi);
uint32_t bytesTxed = 0;
for (uint8_t j = 0; j < nLayer; j++)
{
newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
newDci.m_tbsSize.push_back (tbSize);
NS_LOG_DEBUG (this << " MCS " << m_amc->GetMcsFromCqi (worstCqi.at (j)));
bytesTxed += tbSize;
}
newDci.m_resAlloc = 0; // only allocation type 0 at this stage
newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
uint32_t rbgMask = 0;
for (uint16_t k = 0; k < (*itMap).second.size (); k++)
{
rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
// NS_LOG_DEBUG (this << " Allocated PRB " << (*itMap).second.at (k));
}
newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
// create the rlc PDUs -> equally divide resources among actives LCs
std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
{
if (((*itBufReq).first.m_rnti == (*itMap).first) &&
(((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
|| ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
|| ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
{
for (uint8_t j = 0; j < nLayer; j++)
{
RlcPduListElement_s newRlcEl;
newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
NS_LOG_DEBUG (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
newRlcPduLe.push_back (newRlcEl);
UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
}
}
if ((*itBufReq).first.m_rnti > (*itMap).first)
{
break;
}
}
newDci.m_ndi.push_back (1); // TBD (new data indicator)
newDci.m_rv.push_back (0); // TBD (redundancy version)
newEl.m_dci = newDci;
// ...more parameters -> ingored in this version
newEl.m_rlcPduList.push_back (newRlcPduLe);
ret.m_buildDataList.push_back (newEl);
// update UE stats
std::map <uint16_t, pfsFlowPerf_t>::iterator it;
it = m_flowStatsDl.find ((*itMap).first);
if (it != m_flowStatsDl.end ())
{
(*it).second.lastTtiBytesTrasmitted = bytesTxed;
// NS_LOG_DEBUG (this << " UE bytes txed " << (*it).second.lastTtiBytesTrasmitted);
}
else
{
NS_LOG_DEBUG (this << " No Stats for this allocated UE");
}
itMap++;
} // end while allocation
ret.m_nrOfPdcchOfdmSymbols = 1; // TODO: check correct value according the DCIs txed
// update UEs stats
for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
{
(*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
// update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
(*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
// NS_LOG_DEBUG (this << " UE tot bytes " << (*itStats).second.totalBytesTransmitted);
// NS_LOG_DEBUG (this << " UE avg thr " << (*itStats).second.lastAveragedThroughput);
(*itStats).second.lastTtiBytesTrasmitted = 0;
}
m_schedSapUser->SchedDlConfigInd (ret);
return;
}
void
PfFfMacScheduler::DoSchedDlRachInfoReq (const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
PfFfMacScheduler::DoSchedDlCqiInfoReq (const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
{
if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
{
// wideband CQI reporting
std::map <uint16_t,uint8_t>::iterator it;
uint16_t rnti = params.m_cqiList.at (i).m_rnti;
it = m_p10CqiRxed.find (rnti);
if (it == m_p10CqiRxed.end ())
{
// create the new entry
m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
// generate correspondent timer
m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
}
else
{
// update the CQI value and refresh correspondent timer
(*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
// update correspondent timer
std::map <uint16_t,uint32_t>::iterator itTimers;
itTimers = m_p10CqiTimers.find (rnti);
(*itTimers).second = m_cqiTimersThreshold;
}
}
else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
{
// subband CQI reporting high layer configured
std::map <uint16_t,SbMeasResult_s>::iterator it;
uint16_t rnti = params.m_cqiList.at (i).m_rnti;
it = m_a30CqiRxed.find (rnti);
if (it == m_a30CqiRxed.end ())
{
// create the new entry
m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
}
else
{
// update the CQI value and refresh correspondent timer
(*it).second = params.m_cqiList.at (i).m_sbMeasResult;
std::map <uint16_t,uint32_t>::iterator itTimers;
itTimers = m_a30CqiTimers.find (rnti);
(*itTimers).second = m_cqiTimersThreshold;
}
}
else
{
NS_LOG_ERROR (this << " CQI type unknown");
}
}
return;
}
double
PfFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
{
std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
if (itCqi == m_ueCqi.end ())
{
// no cqi info about this UE
return (NO_SINR);
}
else
{
// take the average SINR value among the available
double sinrSum = 0;
int sinrNum = 0;
for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
{
double sinr = (*itCqi).second.at (i);
if (sinr != NO_SINR)
{
sinrSum += sinr;
sinrNum++;
}
}
double estimatedSinr = sinrSum / (double)sinrNum;
// store the value
(*itCqi).second.at (rb) = estimatedSinr;
return (estimatedSinr);
}
}
void
PfFfMacScheduler::DoSchedUlTriggerReq (const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters& params)
{
NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
RefreshUlCqiMaps ();
std::map <uint16_t,uint32_t>::iterator it;
int nflows = 0;
for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
{
// remove old entries of this UE-LC
if ((*it).second > 0)
{
nflows++;
}
}
if (nflows == 0)
{
return ; // no flows to be scheduled
}
// Divide the resource equally among the active users
int rbPerFlow = m_cschedCellConfig.m_ulBandwidth / nflows;
if (rbPerFlow == 0)
{
rbPerFlow = 1; // at least 1 rbg per flow (till available resource)
}
int rbAllocated = 0;
FfMacSchedSapUser::SchedUlConfigIndParameters ret;
std::vector <uint16_t> rbgAllocationMap;
std::map <uint16_t, pfsFlowPerf_t>::iterator itStats;
if (m_nextRntiUl != 0)
{
for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
{
if ((*it).first == m_nextRntiUl)
{
break;
}
}
if (it == m_ceBsrRxed.end ())
{
NS_LOG_ERROR (this << " no user found");
}
}
else
{
it = m_ceBsrRxed.begin ();
m_nextRntiUl = (*it).first;
}
do
{
if (rbAllocated + rbPerFlow > m_cschedCellConfig.m_ulBandwidth)
{
// limit to physical resources last resource assignment
rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
}
UlDciListElement_s uldci;
uldci.m_rnti = (*it).first;
uldci.m_rbStart = rbAllocated;
uldci.m_rbLen = rbPerFlow;
std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
int cqi = 0;
if (itCqi == m_ueCqi.end ())
{
// no cqi info about this UE
uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
// NS_LOG_DEBUG (this << " UE does not have ULCQI " << (*it).first );
}
else
{
// take the lowest CQI value (worst RB)
double minSinr = (*itCqi).second.at (uldci.m_rbStart);
if (minSinr == NO_SINR)
{
minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
}
for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
{
// NS_LOG_DEBUG (this << " UE " << (*it).first << " has SINR " << (*itCqi).second.at(i));
double sinr = (*itCqi).second.at (i);
if (sinr == NO_SINR)
{
sinr = EstimateUlSinr ((*it).first, i);
}
if ((*itCqi).second.at (i) < minSinr)
{
minSinr = (*itCqi).second.at (i);
}
}
// translate SINR -> cqi: WILD ACK: same as DL
double s = log2 ( 1 + (
pow (10, minSinr / 10 ) /
( (-log (5.0 * 0.00005 )) / 1.5) ));
cqi = m_amc->GetCqiFromSpectralEfficiency (s);
if (cqi == 0)
{
it++;
if (it == m_ceBsrRxed.end ())
{
// restart from the first
it = m_ceBsrRxed.begin ();
}
continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
}
uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
// NS_LOG_DEBUG (this << " UE " << (*it).first << " minsinr " << minSinr << " -> mcs " << (uint16_t)uldci.m_mcs);
}
rbAllocated += rbPerFlow;
// store info on allocation for managing ul-cqi interpretation
for (int i = 0; i < rbPerFlow; i++)
{
rbgAllocationMap.push_back ((*it).first);
}
uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
NS_LOG_DEBUG (this << " UE " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated);
UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
uldci.m_ndi = 1;
uldci.m_cceIndex = 0;
uldci.m_aggrLevel = 1;
uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
uldci.m_hopping = false;
uldci.m_n2Dmrs = 0;
uldci.m_tpc = 0; // no power control
uldci.m_cqiRequest = false; // only period CQI at this stage
uldci.m_ulIndex = 0; // TDD parameter
uldci.m_dai = 1; // TDD parameter
uldci.m_freqHopping = 0;
uldci.m_pdcchPowerOffset = 0; // not used
ret.m_dciList.push_back (uldci);
// update TTI UE stats
itStats = m_flowStatsUl.find ((*it).first);
if (itStats != m_flowStatsUl.end ())
{
(*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
// NS_LOG_DEBUG (this << " UE bytes txed " << (*it).second.lastTtiBytesTrasmitted);
}
else
{
NS_LOG_DEBUG (this << " No Stats for this allocated UE");
}
it++;
if (it == m_ceBsrRxed.end ())
{
// restart from the first
it = m_ceBsrRxed.begin ();
}
if (rbAllocated == m_cschedCellConfig.m_ulBandwidth)
{
// Stop allocation: no more PRBs
m_nextRntiUl = (*it).first;
break;
}
}
while ((*it).first != m_nextRntiUl);
// Update global UE stats
// update UEs stats
for (itStats = m_flowStatsUl.begin (); itStats != m_flowStatsUl.end (); itStats++)
{
(*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
// update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
(*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
// NS_LOG_DEBUG (this << " UE tot bytes " << (*itStats).second.totalBytesTransmitted);
// NS_LOG_DEBUG (this << " UE avg thr " << (*itStats).second.lastAveragedThroughput);
(*itStats).second.lastTtiBytesTrasmitted = 0;
}
m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
m_schedSapUser->SchedUlConfigInd (ret);
return;
}
void
PfFfMacScheduler::DoSchedUlNoiseInterferenceReq (const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
PfFfMacScheduler::DoSchedUlSrInfoReq (const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
// TODO: Implementation of the API
return;
}
void
PfFfMacScheduler::DoSchedUlMacCtrlInfoReq (const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
std::map <uint16_t,uint32_t>::iterator it;
for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
{
if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
{
// buffer status report
uint16_t rnti = params.m_macCeList.at (i).m_rnti;
it = m_ceBsrRxed.find (rnti);
if (it == m_ceBsrRxed.end ())
{
// create the new entry
uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0);
int buffer = BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer)); // only 1 buffer status is working now
}
else
{
// update the CQI value
(*it).second = BufferSizeLevelBsr::BsrId2BufferSize (params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (0));
}
}
}
return;
}
void
PfFfMacScheduler::DoSchedUlCqiInfoReq (const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters& params)
{
NS_LOG_FUNCTION (this);
// NS_LOG_DEBUG (this << " RX SFNID " << params.m_sfnSf);
// retrieve the allocation for this subframe
std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
std::map <uint16_t, std::vector <double> >::iterator itCqi;
itMap = m_allocationMaps.find (params.m_sfnSf);
if (itMap == m_allocationMaps.end ())
{
NS_LOG_DEBUG (this << " Does not find info on allocation, size : " << m_allocationMaps.size ());
return;
}
for (uint32_t i = 0; i < (*itMap).second.size (); i++)
{
// convert from fixed point notation Sxxxxxxxxxxx.xxx to double
// NS_LOG_INFO (this << " i " << i << " size " << params.m_ulCqi.m_sinr.size () << " mapSIze " << (*itMap).second.size ());
double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
//NS_LOG_DEBUG (this << " UE " << (*itMap).second.at (i) << " SINRfp " << params.m_ulCqi.m_sinr.at (i) << " sinrdb " << sinr);
itCqi = m_ueCqi.find ((*itMap).second.at (i));
if (itCqi == m_ueCqi.end ())
{
// create a new entry
std::vector <double> newCqi;
for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
{
if (i == j)
{
newCqi.push_back (sinr);
}
else
{
// initialize with NO_SINR value.
newCqi.push_back (NO_SINR);
}
}
m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
// generate correspondent timer
m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
}
else
{
// update the value
(*itCqi).second.at (i) = sinr;
// update correspondent timer
std::map <uint16_t, uint32_t>::iterator itTimers;
itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
(*itTimers).second = m_cqiTimersThreshold;
}
}
// remove obsolete info on allocation
m_allocationMaps.erase (itMap);
return;
}
void
PfFfMacScheduler::RefreshDlCqiMaps(void)
{
// refresh DL CQI P01 Map
std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
while (itP10!=m_p10CqiTimers.end ())
{
// NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
if ((*itP10).second == 0)
{
// delete correspondent entries
std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
NS_LOG_INFO (this << " P10-CQI exired for user " << (*itP10).first);
m_p10CqiRxed.erase (itMap);
std::map <uint16_t,uint32_t>::iterator temp = itP10;
itP10++;
m_p10CqiTimers.erase (temp);
}
else
{
(*itP10).second--;
itP10++;
}
}
// refresh DL CQI A30 Map
std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
while (itA30!=m_a30CqiTimers.end ())
{
// NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
if ((*itA30).second == 0)
{
// delete correspondent entries
std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
NS_LOG_INFO (this << " A30-CQI exired for user " << (*itA30).first);
m_a30CqiRxed.erase (itMap);
std::map <uint16_t,uint32_t>::iterator temp = itA30;
itA30++;
m_a30CqiTimers.erase (temp);
}
else
{
(*itA30).second--;
itA30++;
}
}
return;
}
void
PfFfMacScheduler::RefreshUlCqiMaps(void)
{
// refresh UL CQI Map
std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
while (itUl!=m_ueCqiTimers.end ())
{
// NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
if ((*itUl).second == 0)
{
// delete correspondent entries
std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
(*itMap).second.clear ();
m_ueCqi.erase (itMap);
std::map <uint16_t,uint32_t>::iterator temp = itUl;
itUl++;
m_ueCqiTimers.erase (temp);
}
else
{
(*itUl).second--;
itUl++;
}
}
return;
}
void
PfFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
{
std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
LteFlowId_t flow (rnti, lcid);
it = m_rlcBufferReq.find (flow);
if (it!=m_rlcBufferReq.end ())
{
// NS_LOG_DEBUG (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
// Update queues: RLC tx order Status, ReTx, Tx
// Update status queue
if ((*it).second.m_rlcStatusPduSize <= size)
{
size -= (*it).second.m_rlcStatusPduSize;
(*it).second.m_rlcStatusPduSize = 0;
}
else
{
(*it).second.m_rlcStatusPduSize -= size;
return;
}
// update retransmission queue
if ((*it).second.m_rlcRetransmissionQueueSize <= size)
{
size -= (*it).second.m_rlcRetransmissionQueueSize;
(*it).second.m_rlcRetransmissionQueueSize = 0;
}
else
{
(*it).second.m_rlcRetransmissionQueueSize -= size;
return;
}
// update transmission queue
if ((*it).second.m_rlcTransmissionQueueSize <= size)
{
size -= (*it).second.m_rlcTransmissionQueueSize;
(*it).second.m_rlcTransmissionQueueSize = 0;
}
else
{
(*it).second.m_rlcTransmissionQueueSize -= size;
return;
}
}
else
{
NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
}
}
void
PfFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
{
std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
if (it!=m_ceBsrRxed.end ())
{
// NS_LOG_DEBUG (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
if ((*it).second >= size)
{
(*it).second -= size;
}
else
{
(*it).second = 0;
}
}
else
{
NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
}
}
void
PfFfMacScheduler::TransmissionModeConfigurationUpdate (uint16_t rnti, uint8_t txMode)
{
NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
FfMacCschedSapUser::CschedUeConfigUpdateIndParameters params;
params.m_rnti = rnti;
params.m_transmissionMode = txMode;
m_cschedSapUser->CschedUeConfigUpdateInd (params);
}
}