examples/mixed-wireless.py
author Florian Westphal <fw@strlen.de>
Wed, 03 Sep 2008 23:24:59 +0200
changeset 3595 693faf7f4e9b
parent 3536 087b1b45b3b5
child 4211 11cae8936153
permissions -rw-r--r--
nsc: Fix build problem if gtk config store is disabled gtk config store pulled in libdl.so for us, so things fail to link of the config store isn't enabled. This makes nsc pull in libdl itself when its enabled.

# /*
#  * This program is free software; you can redistribute it and/or modify
#  * it under the terms of the GNU General Public License version 2 as
#  * published by the Free Software Foundation;
#  *
#  * This program is distributed in the hope that it will be useful,
#  * but WITHOUT ANY WARRANTY; without even the implied warranty of
#  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  * GNU General Public License for more details.
#  *
#  * You should have received a copy of the GNU General Public License
#  * along with this program; if not, write to the Free Software
#  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#  *
#  */

# 
#  This ns-3 example demonstrates the use of helper functions to ease 
#  the construction of simulation scenarios.  
#  
#  The simulation topology consists of a mixed wired and wireless
#  scenario in which a hierarchical mobility model is used.
# 
#  The simulation layout consists of N backbone routers interconnected
#  by an ad hoc wifi network.
#  Each backbone router also has a local 802.11 network and is connected
#  to a local LAN.  An additional set of(K-1) nodes are connected to
#  this backbone.  Finally, a local LAN is connected to each router
#  on the backbone, with L-1 additional hosts.  
# 
#  The nodes are populated with TCP/IP stacks, and OLSR unicast routing
#  on the backbone.  An example UDP transfer is shown.  The simulator
#  be configured to output tcpdumps or traces from different nodes.
# 
# 
#           +--------------------------------------------------------+
#           |                                                        |
#           |              802.11 ad hoc, ns-2 mobility              | 
#           |                                                        |
#           +--------------------------------------------------------+
#                    |       o o o(N backbone routers)       |
#                +--------+                               +--------+
#      wired LAN | mobile |                     wired LAN | mobile |
#     -----------| router |                    -----------| router |
#                ---------                                ---------
#                    |                                        |
#           +----------------+                       +----------------+
#           |     802.11     |                       |     802.11     |
#           |      net       |                       |       net      |
#           |   K-1 hosts    |                       |   K-1 hosts    |
#           +----------------+                       +----------------+
# 

import ns3

# # 
# #  This function will be used below as a trace sink
# #  
# static void
# CourseChangeCallback(std.string path, Ptr<const MobilityModel> model)
# {
#   Vector position = model.GetPosition();
#   std.cout << "CourseChange " << path << " x=" << position.x << ", y=" << position.y << ", z=" << position.z << std.endl;
# }

def main(argv): 
    # 
    #  First, we declare and initialize a few local variables that control some 
    #  simulation parameters.
    # 
    backboneNodes = 10
    infraNodes = 5
    lanNodes = 5
    stopTime = 10

    # 
    #  Simulation defaults are typically set next, before command line
    #  arguments are parsed.
    # 
    ns3.Config.SetDefault("ns3::OnOffApplication::PacketSize", ns3.StringValue("210"))
    ns3.Config.SetDefault("ns3::OnOffApplication::DataRate", ns3.StringValue("448kb/s"))

    # 
    #  For convenience, we add the local variables to the command line argument
    #  system so that they can be overridden with flags such as 
    #  "--backboneNodes=20"
    # 
    cmd = ns3.CommandLine()
    #cmd.AddValue("backboneNodes", "number of backbone nodes", backboneNodes)
    #cmd.AddValue("infraNodes", "number of leaf nodes", infraNodes)
    #cmd.AddValue("lanNodes", "number of LAN nodes", lanNodes)
    #cmd.AddValue("stopTime", "simulation stop time(seconds)", stopTime)

    # 
    #  The system global variables and the local values added to the argument
    #  system can be overridden by command line arguments by using this call.
    # 
    cmd.Parse(argv)

    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 
    #                                                                        # 
    #  Construct the backbone                                                # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 

    # 
    #  Create a container to manage the nodes of the adhoc(backbone) network.
    #  Later we'll create the rest of the nodes we'll need.
    # 
    backbone = ns3.NodeContainer()
    backbone.Create(backboneNodes)
    # 
    #  Create the backbone wifi net devices and install them into the nodes in 
    #  our container
    # 
    wifi = ns3.WifiHelper()
    wifi.SetMac("ns3::AdhocWifiMac")
    wifi.SetPhy("ns3::WifiPhy")
    backboneDevices = wifi.Install(backbone)
    # 
    #  Add the IPv4 protocol stack to the nodes in our container
    # 
    internet = ns3.InternetStackHelper()
    internet.Install(backbone)
    # 
    #  Assign IPv4 addresses to the device drivers(actually to the associated
    #  IPv4 interfaces) we just created.
    # 
    ipAddrs = ns3.Ipv4AddressHelper()
    ipAddrs.SetBase(ns3.Ipv4Address("192.168.0.0"), ns3.Ipv4Mask("255.255.255.0"))
    ipAddrs.Assign(backboneDevices)

    # 
    #  The ad-hoc network nodes need a mobility model so we aggregate one to 
    #  each of the nodes we just finished building.  
    # 
    mobility = ns3.MobilityHelper()
    positionAlloc = ns3.ListPositionAllocator()
    x = 0.0
    for i in range(backboneNodes):
        positionAlloc.Add(ns3.Vector(x, 0.0, 0.0))
        x += 5.0
    mobility.SetPositionAllocator(positionAlloc)
    mobility.SetMobilityModel("ns3::RandomDirection2dMobilityModel",
                               "Bounds", ns3.RectangleValue(ns3.Rectangle(0, 1000, 0, 1000)),
                               "Speed", ns3.RandomVariableValue(ns3.ConstantVariable(2000)),
                               "Pause", ns3.RandomVariableValue(ns3.ConstantVariable(0.2)))
    mobility.Install(backbone)

    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 
    #                                                                        # 
    #  Construct the LANs                                                    # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 

    #  Reset the address base-- all of the CSMA networks will be in
    #  the "172.16 address space
    ipAddrs.SetBase(ns3.Ipv4Address("172.16.0.0"), ns3.Ipv4Mask("255.255.255.0"))

    for i in range(backboneNodes):
        print "Configuring local area network for backbone node ", i
        # 
        #  Create a container to manage the nodes of the LAN.  We need
        #  two containers here; one with all of the new nodes, and one
        #  with all of the nodes including new and existing nodes
        # 
        newLanNodes = ns3.NodeContainer()
        newLanNodes.Create(lanNodes - 1)
        #  Now, create the container with all nodes on this link
        lan = ns3.NodeContainer(ns3.NodeContainer(backbone.Get(i)), newLanNodes)
        # 
        #  Create the CSMA net devices and install them into the nodes in our 
        #  collection.
        # 
        csma = ns3.CsmaHelper()
        csma.SetChannelAttribute("DataRate", ns3.DataRateValue(ns3.DataRate(5000000)))
        csma.SetChannelAttribute("Delay", ns3.TimeValue(ns3.MilliSeconds(2)))
        lanDevices = csma.Install(lan)
        # 
        #  Add the IPv4 protocol stack to the new LAN nodes
        # 
        internet.Install(newLanNodes)
        # 
        #  Assign IPv4 addresses to the device drivers(actually to the 
        #  associated IPv4 interfaces) we just created.
        # 
        ipAddrs.Assign(lanDevices)
        # 
        #  Assign a new network prefix for the next LAN, according to the
        #  network mask initialized above
        # 
        ipAddrs.NewNetwork()

    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 
    #                                                                        # 
    #  Construct the mobile networks                                         # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 

    #  Reset the address base-- all of the 802.11 networks will be in
    #  the "10.0" address space
    ipAddrs.SetBase(ns3.Ipv4Address("10.0.0.0"), ns3.Ipv4Mask("255.255.255.0"))

    for i in range(backboneNodes):
        print "Configuring wireless network for backbone node ", i
        # 
        #  Create a container to manage the nodes of the LAN.  We need
        #  two containers here; one with all of the new nodes, and one
        #  with all of the nodes including new and existing nodes
        # 
        newInfraNodes = ns3.NodeContainer()
        newInfraNodes.Create(infraNodes - 1)
        #  Now, create the container with all nodes on this link
        infra = ns3.NodeContainer(ns3.NodeContainer(backbone.Get(i)), newInfraNodes)
        # 
        #  Create another ad hoc network and devices
        # 
        wifiInfra = ns3.WifiHelper()
        wifiInfra.SetMac("ns3::AdhocWifiMac")
        wifiInfra.SetPhy("ns3::WifiPhy")
        infraDevices = wifiInfra.Install(infra)

        #  Add the IPv4 protocol stack to the nodes in our container
        # 
        internet.Install(newInfraNodes)
        # 
        #  Assign IPv4 addresses to the device drivers(actually to the associated
        #  IPv4 interfaces) we just created.
        # 
        ipAddrs.Assign(infraDevices)
        # 
        #  Assign a new network prefix for each mobile network, according to 
        #  the network mask initialized above
        # 
        ipAddrs.NewNetwork()
        # 
        #  The new wireless nodes need a mobility model so we aggregate one 
        #  to each of the nodes we just finished building.
        # 
        subnetAlloc = ns3.ListPositionAllocator()
        for j in range(infra.GetN()):
            subnetAlloc.Add(ns3.Vector(0.0, j, 0.0))

        mobility.PushReferenceMobilityModel(backbone.Get(i))
        mobility.SetPositionAllocator(subnetAlloc)
        mobility.SetMobilityModel("ns3::RandomDirection2dMobilityModel",
                                  "Bounds", ns3.RectangleValue(ns3.Rectangle(-25, 25, -25, 25)),
                                  "Speed", ns3.RandomVariableValue(ns3.ConstantVariable(30)),
                                  "Pause", ns3.RandomVariableValue(ns3.ConstantVariable(0.4)))
        mobility.Install(infra)

    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 
    #                                                                        # 
    #  Routing configuration                                                 # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 

    print "Enabling OLSR routing on all backbone nodes"
    olsr = ns3.OlsrHelper()
    olsr.Install(backbone)

    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 
    #                                                                        # 
    #  Application configuration                                             # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 

    #  Create the OnOff application to send UDP datagrams of size
    #  210 bytes at a rate of 448 Kb/s, between two nodes
    print "Create Applications."
    port = 9   #  Discard port(RFC 863)

    #  Let's make sure that the user does not define too few LAN nodes
    #  to make this example work.  We need lanNodes >= 5
    assert (lanNodes >= 5)
    appSource = ns3.NodeList.GetNode(11)
    appSink = ns3.NodeList.GetNode(13)
    remoteAddr = ns3.Ipv4Address("172.16.0.5")

    onoff = ns3.OnOffHelper("ns3::UdpSocketFactory", 
                            ns3.Address(ns3.InetSocketAddress(remoteAddr, port)))
    onoff.SetAttribute("OnTime", ns3.RandomVariableValue(ns3.ConstantVariable(1)))
    onoff.SetAttribute("OffTime", ns3.RandomVariableValue(ns3.ConstantVariable(0)))
    apps = onoff.Install(ns3.NodeContainer(appSource))
    apps.Start(ns3.Seconds(3.0))
    apps.Stop(ns3.Seconds(20.0))

    #  Create a packet sink to receive these packets
    sink = ns3.PacketSinkHelper("ns3::UdpSocketFactory", 
                                ns3.InetSocketAddress(ns3.Ipv4Address.GetAny(), port))
    apps = sink.Install(ns3.NodeContainer(appSink))
    apps.Start(ns3.Seconds(3.0))

    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 
    #                                                                        # 
    #  Tracing configuration                                                 # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # / 

    print "Configure Tracing."
    # 
    #  Let's set up some ns-2-like ascii traces, using another helper class
    # 
    #std.ofstream ascii
    #ascii.open("mixed-wireless.tr")
    #WifiHelper.EnableAsciiAll(ascii)
    #CsmaHelper.EnableAsciiAll(ascii)
    print "(tracing not done for Python)"
    #  Look at nodes 11, 13 only
    # WifiHelper.EnableAscii(ascii, 11, 0); 
    # WifiHelper.EnableAscii(ascii, 13, 0); 

    #  Let's do a pcap trace on the backbone devices
    ns3.WifiHelper.EnablePcap("mixed-wireless", backboneDevices)
    #  Let's additionally trace the application Sink, ifIndex 0
    ns3.CsmaHelper.EnablePcap("mixed-wireless", appSink.GetId(), 0)

#   #ifdef ENABLE_FOR_TRACING_EXAMPLE
#     Config.Connect("/NodeList/*/$MobilityModel/CourseChange",
#       MakeCallback(&CourseChangeCallback))
#   #endif


    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
    #                                                                        # 
    #  Run simulation                                                        # 
    #                                                                        # 
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  

    print "Run Simulation."
    ns3.Simulator.Stop(ns3.Seconds(stopTime))
    ns3.Simulator.Run()
    ns3.Simulator.Destroy()


if __name__ == '__main__':
    import sys
    main(sys.argv)