/* -*- Mode: C++; c-file-style: "gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Marco Miozzo <marco.miozzo@cttc.es>
*/
#include <ns3/object.h>
#include <ns3/spectrum-interference.h>
#include <ns3/spectrum-error-model.h>
#include <ns3/log.h>
#include <ns3/test.h>
#include <ns3/simulator.h>
#include <ns3/packet.h>
#include <ns3/ptr.h>
#include <iostream>
#include <ns3/radio-bearer-stats-calculator.h>
#include <ns3/buildings-mobility-model.h>
#include <ns3/hybrid-buildings-propagation-loss-model.h>
#include <ns3/eps-bearer.h>
#include <ns3/node-container.h>
#include <ns3/mobility-helper.h>
#include <ns3/net-device-container.h>
#include <ns3/lte-ue-net-device.h>
#include <ns3/lte-enb-net-device.h>
#include <ns3/lte-ue-rrc.h>
#include <ns3/lte-helper.h>
#include <ns3/string.h>
#include <ns3/double.h>
#include <ns3/lte-enb-phy.h>
#include <ns3/lte-ue-phy.h>
#include <ns3/config.h>
#include <ns3/boolean.h>
#include <ns3/enum.h>
#include <ns3/unused.h>
#include <ns3/ff-mac-scheduler.h>
#include "lte-test-phy-error-model.h"
NS_LOG_COMPONENT_DEFINE ("LenaTestPhyErrorModel");
namespace ns3 {
LenaTestPhyErrorModelrSuite::LenaTestPhyErrorModelrSuite ()
: TestSuite ("lte-phy-error-model", SYSTEM)
{
NS_LOG_INFO ("creating LenaTestPhyErrorModelTestCase");
// Tests on DL Control Channels (PCFICH+PDDCH)
// 1 interfering eNB SINR -2.0 BER 0.007 TB size 217
AddTestCase (new LenaDlCtrlPhyErrorModelTestCase (2, 1078, 217, 0.007));
// 2 interfering eNBs SINR -4.0 BER 0.037 TB size 217
AddTestCase (new LenaDlCtrlPhyErrorModelTestCase (3, 1040, 217, 0.045));
// 3 interfering eNBs SINR -6.0 BER 0.21 TB size 133
AddTestCase (new LenaDlCtrlPhyErrorModelTestCase (4, 1250, 133, 0.206));
// 4 interfering eNBs SINR -7.0 BER 0.34 TB size 133
AddTestCase (new LenaDlCtrlPhyErrorModelTestCase (5, 1260, 81, 0.343));
// Tests on DL/UL Data channels (PDSCH, PUSCH)
// MCS 2 TB size of 256 bits BER 0.33 SINR -5.51
AddTestCase (new LenaDataPhyErrorModelTestCase (4, 1800, 32, 0.35, 50));
// MCS 2 TB size of 528 bits BER 0.11 SINR -5.51
AddTestCase (new LenaDataPhyErrorModelTestCase (2, 1800, 66, 0.11, 34));
// MCS 2 TB size of 1088 bits BER 0.02 SINR -5.51
AddTestCase (new LenaDataPhyErrorModelTestCase (1, 1800, 136, 0.02, 16));
// MCS 12 TB size of 4800 bits BER 0.3 SINR 4.43
AddTestCase (new LenaDataPhyErrorModelTestCase (1, 600, 600, 0.3, 48));
// MCS 12 TB size of 1632 bits BER 0.55 SINR 4.43
AddTestCase (new LenaDataPhyErrorModelTestCase (3, 600, 204, 0.55, 52));
// MCS 16 TB size of 7272 bits (3648 x 3584) BER 0.14 SINR 8.48
// BER 0.14 = 1 - ((1-0.075)*(1-0.075))
AddTestCase (new LenaDataPhyErrorModelTestCase (1, 470, 781, 0.14, 29));
}
static LenaTestPhyErrorModelrSuite lenaTestPhyErrorModelrSuite;
std::string
LenaDataPhyErrorModelTestCase::BuildNameString (uint16_t nUser, uint16_t dist)
{
std::ostringstream oss;
oss << nUser << " UEs, distance " << dist << " m";
return oss.str ();
}
LenaDataPhyErrorModelTestCase::LenaDataPhyErrorModelTestCase (uint16_t nUser, uint16_t dist, uint16_t tbSize, double berRef, uint16_t bernQuantile)
: TestCase (BuildNameString (nUser, dist)),
m_nUser (nUser),
m_dist (dist),
m_tbSize (tbSize),
m_berRef (berRef),
m_bernQuantile (bernQuantile)
{
}
LenaDataPhyErrorModelTestCase::~LenaDataPhyErrorModelTestCase ()
{
}
void
LenaDataPhyErrorModelTestCase::DoRun (void)
{
double ber = 0.03;
Config::SetDefault ("ns3::LteAmc::Ber", DoubleValue (ber));
Config::SetDefault ("ns3::LteAmc::AmcModel", EnumValue (LteAmc::PiroEW2010));
Config::SetDefault ("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue (false));
Config::SetDefault ("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue (true));
// LogComponentEnable ("LteEnbRrc", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUeRrc", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbMac", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUeMac", LOG_LEVEL_ALL);
// LogComponentEnable ("LteRlc", LOG_LEVEL_ALL);
//
// LogComponentEnable ("LtePhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUePhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteSpectrumPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteInterference", LOG_LEVEL_ALL);
// LogComponentEnable ("LteSinrChunkProcessor", LOG_LEVEL_ALL);
//
// LogComponentEnable ("LtePropagationLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("LossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("ShadowingLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("PenetrationLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("MultipathLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("PathLossModel", LOG_LEVEL_ALL);
//
// LogComponentEnable ("LteNetDevice", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUeNetDevice", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbNetDevice", LOG_LEVEL_ALL);
// LogComponentEnable ("RrFfMacScheduler", LOG_LEVEL_ALL);
// LogComponentEnable ("LenaHelper", LOG_LEVEL_ALL);
// LogComponentEnable ("RlcStatsCalculator", LOG_LEVEL_ALL);
// LogComponentEnable ("LteSpectrumPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbMac", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUePhy", LOG_LEVEL_ALL);
// LogComponentEnable ("RrFfMacScheduler", LOG_LEVEL_ALL);
// LogComponentEnable ("LenaHelper", LOG_LEVEL_ALL);
// LogComponentEnable ("BuildingsPropagationLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("LteMiErrorModel", LOG_LEVEL_ALL);
// LogComponentEnable ("LteAmc", LOG_LEVEL_ALL);
//
LogComponentDisableAll (LOG_LEVEL_ALL);
LogComponentEnable ("LenaTestPhyErrorModel", LOG_LEVEL_ALL);
/**
* Initialize Simulation Scenario: 1 eNB and m_nUser UEs
*/
Ptr<LteHelper> lena = CreateObject<LteHelper> ();
// Create Nodes: eNodeB and UE
NodeContainer enbNodes;
NodeContainer ueNodes;
enbNodes.Create (1);
ueNodes.Create (m_nUser);
// Install Mobility Model
MobilityHelper mobility;
mobility.SetMobilityModel ("ns3::BuildingsMobilityModel");
mobility.Install (enbNodes);
mobility.SetMobilityModel ("ns3::BuildingsMobilityModel");
mobility.Install (ueNodes);
// remove random shadowing component
lena->SetAttribute ("PathlossModel", StringValue ("ns3::HybridBuildingsPropagationLossModel"));
lena->SetPathlossModelAttribute ("ShadowSigmaOutdoor", DoubleValue (0.0));
lena->SetPathlossModelAttribute ("ShadowSigmaIndoor", DoubleValue (0.0));
lena->SetPathlossModelAttribute ("ShadowSigmaExtWalls", DoubleValue (0.0));
// Create Devices and install them in the Nodes (eNB and UE)
NetDeviceContainer enbDevs;
NetDeviceContainer ueDevs;
lena->SetSchedulerType ("ns3::RrFfMacScheduler");
lena->SetSchedulerAttribute ("UlCqiFilter", EnumValue (FfMacScheduler::PUSCH_UL_CQI));
enbDevs = lena->InstallEnbDevice (enbNodes);
ueDevs = lena->InstallUeDevice (ueNodes);
// Attach a UE to a eNB
lena->Attach (ueDevs, enbDevs.Get (0));
// Activate an EPS bearer
enum EpsBearer::Qci q = EpsBearer::GBR_CONV_VOICE;
EpsBearer bearer (q);
lena->ActivateEpsBearer (ueDevs, bearer, EpcTft::Default ());
Ptr<LteEnbNetDevice> lteEnbDev = enbDevs.Get (0)->GetObject<LteEnbNetDevice> ();
Ptr<LteEnbPhy> enbPhy = lteEnbDev->GetPhy ();
enbPhy->SetAttribute ("TxPower", DoubleValue (43.0));
enbPhy->SetAttribute ("NoiseFigure", DoubleValue (5.0));
// place the HeNB over the default rooftop level (20 mt.)
Ptr<BuildingsMobilityModel> mm = enbNodes.Get (0)->GetObject<BuildingsMobilityModel> ();
mm->SetPosition (Vector (0.0, 0.0, 30.0));
// Set UEs' position and power
for (int i = 0; i < m_nUser; i++)
{
Ptr<BuildingsMobilityModel> mm = ueNodes.Get (i)->GetObject<BuildingsMobilityModel> ();
mm->SetPosition (Vector (m_dist, 0.0, 1.0));
Ptr<LteUeNetDevice> lteUeDev = ueDevs.Get (i)->GetObject<LteUeNetDevice> ();
Ptr<LteUePhy> uePhy = lteUeDev->GetPhy ();
uePhy->SetAttribute ("TxPower", DoubleValue (23.0));
uePhy->SetAttribute ("NoiseFigure", DoubleValue (9.0));
}
lena->EnableRlcTraces ();
double simulationTime = 1.000;
Simulator::Stop (Seconds (simulationTime));
Ptr<RadioBearerStatsCalculator> rlcStats = lena->GetRlcStats ();
rlcStats->SetAttribute ("EpochDuration", TimeValue (Seconds (simulationTime)));
Simulator::Run ();
/**
* Check that the assignation is done in a RR fashion
*/
NS_LOG_INFO ("\tTest downlink/uplink data shared channels (PDSCH and PUSCH)");
NS_LOG_INFO ("Test with " << m_nUser << " user(s) at distance " << m_dist << " expected BER " << m_berRef);
std::vector <uint64_t> dlDataRxed;
for (int i = 0; i < m_nUser; i++)
{
// get the imsi
uint64_t imsi = ueDevs.Get (i)->GetObject<LteUeNetDevice> ()->GetImsi ();
// get the lcId
uint8_t lcId = ueDevs.Get (i)->GetObject<LteUeNetDevice> ()->GetRrc ()->GetLcIdVector ().at (0);
dlDataRxed.push_back (rlcStats->GetDlRxData (imsi, lcId));
double txed = rlcStats->GetDlTxData (imsi, lcId);
int n = txed / m_tbSize;
int lambda = (double)dlDataRxed.at (i) / m_tbSize;
double ber = 1.0 - ((double)dlDataRxed.at (i)/txed);
double np = n-n*m_berRef;
NS_LOG_INFO ("\tUser " << i << " imsi " << imsi << " bytes rxed " << (double)dlDataRxed.at (i) << " txed " << txed
<< " BER " << ber << " Err " << std::fabs (m_berRef - ber) << " lambda " << lambda
<< " np " << np << " difference " << std::abs (lambda - np) << " quantile " << m_bernQuantile);
NS_UNUSED (ber);
// the quantiles are evaluated offline according to a Bernoulli
// ditribution with n equal to the number of packet sent and p equal
// to the BER (see /reference/bernuolliDistribution.m for details)
NS_TEST_ASSERT_MSG_EQ_TOL (lambda, np, m_bernQuantile, " Unexpected BER distribution!");
}
Simulator::Destroy ();
}
std::string
LenaDlCtrlPhyErrorModelTestCase::BuildNameString (uint16_t nEnb, uint16_t dist)
{
std::ostringstream oss;
oss << nEnb << " eNBs, distance " << dist << " m";
return oss.str ();
}
LenaDlCtrlPhyErrorModelTestCase::LenaDlCtrlPhyErrorModelTestCase (uint16_t nEnb, uint16_t dist, uint16_t tbSize, double berRef)
: TestCase (BuildNameString (nEnb, dist)),
m_nEnb (nEnb),
m_dist (dist),
m_tbSize (tbSize),
m_berRef (berRef)
{
}
LenaDlCtrlPhyErrorModelTestCase::~LenaDlCtrlPhyErrorModelTestCase ()
{
}
void
LenaDlCtrlPhyErrorModelTestCase::DoRun (void)
{
double ber = 0.03;
Config::SetDefault ("ns3::LteAmc::Ber", DoubleValue (ber));
Config::SetDefault ("ns3::LteAmc::AmcModel", EnumValue (LteAmc::PiroEW2010));
Config::SetDefault ("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue (true));
Config::SetDefault ("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue (false));
// LogComponentEnable ("LteEnbRrc", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUeRrc", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbMac", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUeMac", LOG_LEVEL_ALL);
// LogComponentEnable ("LteRlc", LOG_LEVEL_ALL);
//
// LogComponentEnable ("LtePhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUePhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteSpectrumPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteInterference", LOG_LEVEL_ALL);
// LogComponentEnable ("LteSinrChunkProcessor", LOG_LEVEL_ALL);
//
// LogComponentEnable ("LtePropagationLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("LossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("ShadowingLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("PenetrationLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("MultipathLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("PathLossModel", LOG_LEVEL_ALL);
//
// LogComponentEnable ("LteNetDevice", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUeNetDevice", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbNetDevice", LOG_LEVEL_ALL);
// LogComponentEnable ("RrFfMacScheduler", LOG_LEVEL_ALL);
// LogComponentEnable ("LenaHelper", LOG_LEVEL_ALL);
// LogComponentEnable ("RlcStatsCalculator", LOG_LEVEL_ALL);
// LogComponentEnable ("LteSpectrumPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbMac", LOG_LEVEL_ALL);
// LogComponentEnable ("LteEnbPhy", LOG_LEVEL_ALL);
// LogComponentEnable ("LteUePhy", LOG_LEVEL_ALL);
// LogComponentEnable ("RrFfMacScheduler", LOG_LEVEL_ALL);
// LogComponentEnable ("LenaHelper", LOG_LEVEL_ALL);
// LogComponentEnable ("BuildingsPropagationLossModel", LOG_LEVEL_ALL);
// LogComponentEnable ("LteMiErrorModel", LOG_LEVEL_ALL);
// LogComponentEnable ("LteAmc", LOG_LEVEL_ALL);
//
LogComponentDisableAll (LOG_LEVEL_ALL);
LogComponentEnable ("LenaTestPhyErrorModel", LOG_LEVEL_ALL);
/**
* Initialize Simulation Scenario: 1 eNB and m_nUser UEs
*/
Ptr<LteHelper> lena = CreateObject<LteHelper> ();
// Create Nodes: eNodeB and UE
NodeContainer enbNodes;
NodeContainer ueNodes;
enbNodes.Create (m_nEnb);
ueNodes.Create (1);
// Install Mobility Model
MobilityHelper mobility;
mobility.SetMobilityModel ("ns3::BuildingsMobilityModel");
mobility.Install (enbNodes);
mobility.SetMobilityModel ("ns3::BuildingsMobilityModel");
mobility.Install (ueNodes);
// remove random shadowing component
lena->SetAttribute ("PathlossModel", StringValue ("ns3::HybridBuildingsPropagationLossModel"));
lena->SetPathlossModelAttribute ("ShadowSigmaOutdoor", DoubleValue (0.0));
lena->SetPathlossModelAttribute ("ShadowSigmaIndoor", DoubleValue (0.0));
lena->SetPathlossModelAttribute ("ShadowSigmaExtWalls", DoubleValue (0.0));
// Create Devices and install them in the Nodes (eNB and UE)
NetDeviceContainer enbDevs;
NetDeviceContainer ueDevs;
lena->SetSchedulerType ("ns3::RrFfMacScheduler");
lena->SetSchedulerAttribute ("UlCqiFilter", EnumValue (FfMacScheduler::PUSCH_UL_CQI));
enbDevs = lena->InstallEnbDevice (enbNodes);
ueDevs = lena->InstallUeDevice (ueNodes);
// Attach a UE to one eNB (the others are interfering ones)
lena->Attach (ueDevs, enbDevs.Get (0));
// Activate an EPS bearer
enum EpsBearer::Qci q = EpsBearer::GBR_CONV_VOICE;
EpsBearer bearer (q);
lena->ActivateEpsBearer (ueDevs, bearer, EpcTft::Default ());
// Set UEs' position and power
for (int i = 0; i < m_nEnb; i++)
{
// place the HeNB over the default rooftop level (20 mt.)
Ptr<BuildingsMobilityModel> mm = enbNodes.Get (i)->GetObject<BuildingsMobilityModel> ();
mm->SetPosition (Vector (0.0, 0.0, 30.0));
Ptr<LteEnbNetDevice> lteEnbDev = enbDevs.Get (i)->GetObject<LteEnbNetDevice> ();
Ptr<LteEnbPhy> enbPhy = lteEnbDev->GetPhy ();
enbPhy->SetAttribute ("TxPower", DoubleValue (43.0));
enbPhy->SetAttribute ("NoiseFigure", DoubleValue (5.0));
}
// Set UEs' position and power
Ptr<BuildingsMobilityModel> mm = ueNodes.Get (0)->GetObject<BuildingsMobilityModel> ();
mm->SetPosition (Vector (m_dist, 0.0, 1.0));
Ptr<LteUeNetDevice> lteUeDev = ueDevs.Get (0)->GetObject<LteUeNetDevice> ();
Ptr<LteUePhy> uePhy = lteUeDev->GetPhy ();
uePhy->SetAttribute ("TxPower", DoubleValue (23.0));
uePhy->SetAttribute ("NoiseFigure", DoubleValue (9.0));
lena->EnableRlcTraces ();
double simulationTime = 1.000;
Simulator::Stop (Seconds (simulationTime));
Ptr<RadioBearerStatsCalculator> rlcStats = lena->GetRlcStats ();
rlcStats->SetAttribute ("EpochDuration", TimeValue (Seconds (simulationTime)));
Simulator::Run ();
/**
* Check that the assignation is done in a RR fashion
*/
NS_LOG_INFO ("\tTest downlink control channels (PCFICH+PDCCH)");
NS_LOG_INFO ("Test with " << m_nEnb << " eNB(s) at distance " << m_dist << " expected BER " << m_berRef);
std::vector <uint64_t> dlDataRxed;
int nUser = 1;
for (int i = 0; i < nUser; i++)
{
// get the imsi
uint64_t imsi = ueDevs.Get (i)->GetObject<LteUeNetDevice> ()->GetImsi ();
// get the lcId
uint8_t lcId = ueDevs.Get (i)->GetObject<LteUeNetDevice> ()->GetRrc ()->GetLcIdVector ().at (0);
dlDataRxed.push_back (rlcStats->GetDlRxData (imsi, lcId));
double txed = rlcStats->GetDlTxData (imsi, lcId);
double ber = 1.0 - ((double)dlDataRxed.at (i)/txed);
NS_LOG_INFO ("\tUser " << i << " imsi " << imsi << " bytes rxed " << (double)dlDataRxed.at (i) << " txed " << txed
<< " BER " << ber << " Err " << fabs (m_berRef - ber));
NS_UNUSED (ber);
NS_TEST_ASSERT_MSG_EQ_TOL (ber, m_berRef, 0.1, " Unexpected BER distribution!");
}
Simulator::Destroy ();
}
} // namespace