#include "int64x64-128.h"
#include "abort.h"
#include "assert.h"
#include "log.h"
namespace ns3 {
// Note: Logging in this file is largely avoided due to the
// number of calls that are made to these functions and the possibility
// of causing recursions leading to stack overflow
NS_LOG_COMPONENT_DEFINE ("int64x64-128");
static inline
bool
output_sign (const int128_t sa,
const int128_t sb,
uint128_t & ua,
uint128_t & ub)
{
bool negA = sa < 0;
bool negB = sb < 0;
ua = negA ? -sa : sa;
ub = negB ? -sb : sb;
return (negA && !negB) || (!negA && negB);
}
void
int64x64_t::Mul (const int64x64_t & o)
{
uint128_t a, b;
bool negative = output_sign (_v, o._v, a, b);
uint128_t result = Umul (a, b);
_v = negative ? -result : result;
}
uint128_t
int64x64_t::Umul (const uint128_t a, const uint128_t b)
{
uint128_t aL = a & HP_MASK_LO;
uint128_t bL = b & HP_MASK_LO;
uint128_t aH = (a >> 64) & HP_MASK_LO;
uint128_t bH = (b >> 64) & HP_MASK_LO;
uint128_t result;
uint128_t hiPart, loPart, midPart;
uint128_t res1, res2;
// Multiplying (a.h 2^64 + a.l) x (b.h 2^64 + b.l) =
// 2^128 a.h b.h + 2^64*(a.h b.l+b.h a.l) + a.l b.l
// get the low part a.l b.l
// multiply the fractional part
loPart = aL * bL;
// compute the middle part 2^64*(a.h b.l+b.h a.l)
midPart = aL * bH + aH * bL;
// compute the high part 2^128 a.h b.h
hiPart = aH * bH;
// if the high part is not zero, put a warning
NS_ABORT_MSG_IF ((hiPart & HP_MASK_HI) != 0,
"High precision 128 bits multiplication error: multiplication overflow.");
// Adding 64-bit terms to get 128-bit results, with carries
res1 = loPart >> 64;
res2 = midPart & HP_MASK_LO;
result = res1 + res2;
res1 = midPart >> 64;
res2 = hiPart & HP_MASK_LO;
res1 += res2;
res1 <<= 64;
result += res1;
return result;
}
void
int64x64_t::Div (const int64x64_t & o)
{
uint128_t a, b;
bool negative = output_sign (_v, o._v, a, b);
int128_t result = Udiv (a, b);
_v = negative ? -result : result;
}
uint128_t
int64x64_t::Udiv (const uint128_t a, const uint128_t b)
{
uint128_t rem = a;
uint128_t den = b;
uint128_t quo = rem / den;
rem = rem % den;
uint128_t result = quo;
// Now, manage the remainder
const uint64_t DIGITS = 64; // Number of fraction digits (bits) we need
const uint128_t ZERO = 0;
NS_ASSERT_MSG (rem < den,
"Remainder not less than divisor");
uint64_t digis = 0; // Number of digits we have already
uint64_t shift = 0; // Number we are going to get this round
// Skip trailing zeros in divisor
while ( (shift < DIGITS) && !(den & 0x1))
{
++shift;
den >>= 1;
}
while ( (digis < DIGITS) && (rem != ZERO) )
{
// Skip leading zeros in remainder
while ( (digis + shift < DIGITS) &&
!(rem & HP128_MASK_HI_BIT))
{
++shift;
rem <<= 1;
}
// Cast off denominator bits if:
// Need more digits and
// LSB is zero or
// rem < den
while ( (digis + shift < DIGITS) &&
( !(den & 0x1) || (rem < den) ) )
{
++shift;
den >>= 1;
}
// Do the division
quo = rem / den;
rem = rem % den;
// Add in the quotient as shift bits of the fraction
result <<= shift;
result += quo;
digis += shift;
shift = 0;
}
// Did we run out of remainder?
if (digis < DIGITS)
{
shift = DIGITS - digis;
result <<= shift;
}
return result;
}
void
int64x64_t::MulByInvert (const int64x64_t & o)
{
bool negResult = _v < 0;
uint128_t a = negResult ? -_v : _v;
uint128_t result = UmulByInvert (a, o._v);
_v = negResult ? -result : result;
}
uint128_t
int64x64_t::UmulByInvert (const uint128_t a, const uint128_t b)
{
uint128_t result, ah, bh, al, bl;
uint128_t hi, mid;
ah = a >> 64;
bh = b >> 64;
al = a & HP_MASK_LO;
bl = b & HP_MASK_LO;
hi = ah * bh;
mid = ah * bl + al * bh;
mid >>= 64;
result = hi + mid;
return result;
}
int64x64_t
int64x64_t::Invert (const uint64_t v)
{
NS_ASSERT (v > 1);
uint128_t a;
a = 1;
a <<= 64;
int64x64_t result;
result._v = Udiv (a, v);
int64x64_t tmp = int64x64_t (v, false);
tmp.MulByInvert (result);
if (tmp.GetHigh () != 1)
{
result._v += 1;
}
return result;
}
} // namespace ns3