src/devices/tap-bridge/tap-sock-creator.cc
changeset 4164 1f6ae48061a9
parent 4163 8c48682b3d42
child 4165 40789460dd8c
--- a/src/devices/tap-bridge/tap-sock-creator.cc	Tue Jan 27 12:36:46 2009 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,456 +0,0 @@
-/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
-/*
- * Copyright (c) 2009 University of Washington
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation;
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
- */
-
-#include <unistd.h>
-#include <stdint.h>
-#include <string>
-#include <iostream>
-#include <iomanip>
-#include <sstream>
-#include <stdlib.h>
-#include <errno.h>
-#include <fcntl.h>
-#include <sys/ioctl.h>
-#include <sys/types.h>
-#include <sys/socket.h>
-#include <linux/un.h>
-#include <linux/if.h>
-#include <linux/if_tun.h>
-#include <linux/route.h>
-#include <netinet/in.h>
-
-#include "tap-encode-decode.h"
-
-#define TAP_MAGIC 95549
-
-static int gVerbose = 0;
-
-#define LOG(msg) \
-  if (gVerbose) \
-    { \
-      std::cout << __FUNCTION__ << "(): " << msg << std::endl;   \
-    }
-
-#define ABORT(msg, printErrno) \
-  std::cout << __FILE__ << ": fatal error at line " << __LINE__ << ": " << __FUNCTION__ << "(): " << msg << std::endl; \
-  if (printErrno) \
-    { \
-      std::cout << "    errno = " << errno << " (" << strerror (errno) << ")" << std::endl; \
-    } \
-  exit (-1); 
-
-#define ABORT_IF(cond, msg, printErrno) \
-  if (cond) \
-    { \
-      ABORT(msg, printErrno); \
-    }
-
-//
-// Thanks, Mathieu, for the beginning of these functions
-//
-#define ASCII_DOT (0x2e)
-#define ASCII_ZERO (0x30)
-#define ASCII_a (0x41)
-#define ASCII_z (0x5a)
-#define ASCII_A (0x61)
-#define ASCII_Z (0x7a)
-#define ASCII_COLON (0x3a)
-#define ASCII_ZERO (0x30)
-
-static char
-AsciiToLowCase (char c)
-{
-  if (c >= ASCII_a && c <= ASCII_z) {
-    return c;
-  } else if (c >= ASCII_A && c <= ASCII_Z) {
-    return c + (ASCII_a - ASCII_A);
-  } else {
-    return c;
-  }
-}
-
-static uint32_t 
-AsciiToIpv4 (const char *address)
-{
-  uint32_t host = 0;
-  while (true) {
-    uint8_t byte = 0;
-    while (*address != ASCII_DOT &&
-           *address != 0) {
-      byte *= 10;
-      byte += *address - ASCII_ZERO;
-      address++;
-    }
-    host <<= 8;
-    host |= byte;
-    if (*address == 0) {
-      break;
-    }
-    address++;
-  }
-  return host;
-}
-
-static void 
-AsciiToMac48 (const char *str, uint8_t addr[6])
-{
-  int i = 0;
-  while (*str != 0 && i < 6) 
-    {
-      uint8_t byte = 0;
-      while (*str != ASCII_COLON && *str != 0) 
-	{
-	  byte <<= 4;
-	  char low = AsciiToLowCase (*str);
-	  if (low >= ASCII_a) 
-	    {
-	      byte |= low - ASCII_a + 10;
-	    } 
-	  else 
-	    {
-	      byte |= low - ASCII_ZERO;
-	    }
-	  str++;
-	}
-      addr[i] = byte;
-      i++;
-      if (*str == 0) 
-	{
-	  break;
-	}
-      str++;
-    }
-}
-
-static void
-SetInetAddress (sockaddr *ad, uint32_t networkOrder)
-{
-  struct sockaddr_in *sin = (struct sockaddr_in*)ad;
-  sin->sin_family = AF_INET;
-  sin->sin_port = 0; // unused
-  sin->sin_addr.s_addr = htonl (networkOrder);
-}
-
-/**
- * \brief Send the socket file descriptor we created back to the tap bridge, 
- * which will read it as soon as we're done.
- *
- * \param path The socket address information from the Unix socket we use
- * to send the created socket back to.
- * \param fd The socket we're going to send. 
- */
-  static void
-SendSocket (const char *path, int fd)
-{
-  //
-  // Open a Unix (local interprocess) socket to call back to the tap bridge
-  //
-  LOG ("Create Unix socket");
-  int sock = socket (PF_UNIX, SOCK_DGRAM, 0);
-  ABORT_IF (sock == -1, "Unable to open socket", 1);
-  
-  //
-  // We have this string called path, which is really a hex representation
-  // of the endpoint that the tap bridge created.  It used a forward encoding
-  // method (TapBufferToString) to take the sockaddr_un it made and passed 
-  // the resulting string to us.  So we need to take the inverse method
-  // (TapStringToBuffer) and build the same sockaddr_un over here.
-  //
-  socklen_t clientAddrLen;
-  struct sockaddr_un clientAddr;
-
-  LOG ("Decode address " << path);
-  bool rc = ns3::TapStringToBuffer (path, (uint8_t *)&clientAddr, &clientAddrLen);
-  ABORT_IF (rc == false, "Unable to decode path", 0);
-
-  LOG ("Connect");
-  int status = connect (sock, (struct sockaddr*)&clientAddr, clientAddrLen);
-  ABORT_IF (status == -1, "Unable to connect to tap bridge", 1);
-
-  LOG ("Connected");
-
-  //
-  // This is arcane enough that a few words are worthwhile to explain what's 
-  // going on here.
-  //
-  // The interesting information (the socket FD) is going to go back to the
-  // tap bridge as an integer of ancillary data.  Ancillary data is bits 
-  // that are not a part a socket payload (out-of-band data).  We're also 
-  // going to send one integer back.  It's just initialized to a magic number
-  // we use to make sure that the tap bridge is talking to the tap socket 
-  // creator and not some other creator process (emu, specifically)
-  //
-  // The struct iovec below is part of a scatter-gather list.  It describes a
-  // buffer.  In this case, it describes a buffer (an integer) containing the
-  // data that we're going to send back to the tap bridge (that magic number).
-  // 
-  struct iovec iov;
-  uint32_t magic = TAP_MAGIC;
-  iov.iov_base = &magic;
-  iov.iov_len = sizeof(magic);
-
-  //
-  // The CMSG macros you'll see below are used to create and access control 
-  // messages (which is another name for ancillary data).  The ancillary 
-  // data is made up of pairs of struct cmsghdr structures and associated
-  // data arrays.
-  // 
-  // First, we're going to allocate a buffer on the stack to contain our 
-  // data array (that contains the socket).  Sometimes you'll see this called
-  // an "ancillary element" but the msghdr uses the control message termimology
-  // so we call it "control."
-  //
-  size_t msg_size = sizeof(int);
-  char control[CMSG_SPACE(msg_size)];
-
-  //
-  // There is a msghdr that is used to minimize the number of parameters
-  // passed to sendmsg (which we will use to send our ancillary data).  This
-  // structure uses terminology corresponding to control messages, so you'll
-  // see msg_control, which is the pointer to the ancillary data and controllen
-  // which is the size of the ancillary data array.
-  //
-  // So, initialize the message header that describes our ancillary/control data
-  // and point it to the control message/ancillary data we just allocated space
-  // for.
-  //
-  struct msghdr msg;
-  msg.msg_name = 0;
-  msg.msg_namelen = 0;
-  msg.msg_iov = &iov;
-  msg.msg_iovlen = 1;
-  msg.msg_control = control;
-  msg.msg_controllen = sizeof (control);
-  msg.msg_flags = 0;
-
-  //
-  // A cmsghdr contains a length field that is the length of the header and
-  // the data.  It has a cmsg_level field corresponding to the originating 
-  // protocol.  This takes values which are legal levels for getsockopt and
-  // setsockopt (here SOL_SOCKET).  We're going to use the SCM_RIGHTS type of 
-  // cmsg, that indicates that the ancillary data array contains access rights 
-  // that we are sending back to the tap bridge.
-  //
-  // We have to put together the first (and only) cmsghdr that will describe
-  // the whole package we're sending.
-  //
-  struct cmsghdr *cmsg;
-  cmsg = CMSG_FIRSTHDR(&msg);
-  cmsg->cmsg_level = SOL_SOCKET;
-  cmsg->cmsg_type = SCM_RIGHTS;
-  cmsg->cmsg_len = CMSG_LEN(msg_size);
-  //
-  // We also have to update the controllen in case other stuff is actually
-  // in there we may not be aware of (due to macros).
-  //
-  msg.msg_controllen = cmsg->cmsg_len;
-
-  //
-  // Finally, we get a pointer to the start of the ancillary data array and
-  // put our file descriptor in.
-  //
-  int *fdptr = (int*) (CMSG_DATA(cmsg));
-  *fdptr = fd; // 
-
-  //
-  // Actually send the file descriptor back to the tap bridge.
-  //
-  ssize_t len = sendmsg(sock, &msg, 0);
-  ABORT_IF (len == -1, "Could not send socket back to tap bridge", 1);
-
-  LOG ("sendmsg complete");
-}
-
-  static int
-CreateTap (const char *dev, const char *gw, const char *ip, const char *netmask, const char *mac)
-{
-  //
-  // Creation and management of Tap devices is done via the tun device
-  //
-  int tap = open ("/dev/net/tun", O_RDWR);
-  ABORT_IF (tap == -1, "Could not open /dev/net/tun", true);
-
-  //
-  // Allocate a tap device, making sure that it will not send the tun_pi header.
-  // If we provide a null name to the ifr.ifr_name, we tell the kernel to pick
-  // a name for us (i.e., tapn where n = 0..255
-  //
-  struct ifreq ifr;
-  ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
-  strcpy (ifr.ifr_name, dev);
-  int status = ioctl (tap, TUNSETIFF, (void *) &ifr);
-  ABORT_IF (status == -1, "Could not allocate tap device", true);
-
-  std::string tapDeviceName = (char *)ifr.ifr_name;
-  LOG ("Allocated TAP device " << tapDeviceName);
-
-  //
-  // Set the hardware (MAC) address of the new device
-  //
-  ifr.ifr_hwaddr.sa_family = 1; // this is ARPHRD_ETHER from if_arp.h
-  AsciiToMac48 (mac, (uint8_t*)ifr.ifr_hwaddr.sa_data);
-  status = ioctl (tap, SIOCSIFHWADDR, &ifr);
-  ABORT_IF (status == -1, "Could not set MAC address", true);
-  LOG ("Set device MAC address to " << mac);
-
-  int fd = socket (AF_INET, SOCK_DGRAM, 0);
-
-  //
-  // Bring the interface up.
-  //
-  status = ioctl (fd, SIOCGIFFLAGS, &ifr);
-  ABORT_IF (status == -1, "Could not get flags for interface", true);
-  ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
-  status = ioctl (fd, SIOCSIFFLAGS, &ifr);
-  ABORT_IF (status == -1, "Could not bring interface up", true);
-  LOG ("Device is up");
-
-  //
-  // Set the IP address of the new interface/device.
-  //
-  SetInetAddress (&ifr.ifr_addr, AsciiToIpv4 (ip));
-  status = ioctl (fd, SIOCSIFADDR, &ifr);
-  ABORT_IF (status == -1, "Could not set IP address", true);
-  LOG ("Set device IP address to " << ip);
-
-  //
-  // Set the net mask of the new interface/device
-  //
-  SetInetAddress (&ifr.ifr_netmask, AsciiToIpv4 (netmask));
-  status = ioctl (fd, SIOCSIFNETMASK, &ifr);
-  ABORT_IF (status == -1, "Could not set net mask", true);
-  LOG ("Set device Net Mask to " << netmask);
-
-  return tap;
-}
-
-  int 
-main (int argc, char *argv[])
-{
-  int c;
-  char *dev = NULL;
-  char *gw = NULL;
-  char *ip = NULL;
-  char *mac = NULL;
-  char *netmask = NULL;
-  char *path = NULL;
-
-  opterr = 0;
-
-  while ((c = getopt (argc, argv, "vd:g:i:m:n:p:")) != -1)
-    {
-      switch (c)
-        {
-        case 'v':
-          gVerbose = true;
-          break;
-        case 'd':
-          dev = optarg;     // name of the new tap device
-          break;
-        case 'g':
-          gw = optarg;      // gateway address for the new device
-          break;
-        case 'i':
-          ip = optarg;      // ip address of the new device
-          break;
-        case 'm':
-          mac = optarg;     // mac address of the new device
-          break;
-        case 'n':
-          netmask = optarg; // net mask for the new device
-          break;
-        case 'p':
-          path = optarg;    // path back to the tap bridge
-          break;
-        }
-    }
-
-  //
-  // We have got to be able to coordinate the name of the tap device we are
-  // going to create and or open with the device that an external Linux host
-  // will use.  THis name is given in dev
-  //
-  ABORT_IF (dev == NULL, "Device Name is a required argument", 0);
-  LOG ("Provided Device Name is \"" << dev << "\"");
-
-  //
-  // We have got to be able to provide a gateway to the external Linux host 
-  // so it can talk to the ns-3 network.  This ip address is provided in 
-  // gw.
-  //
-  ABORT_IF (gw == NULL, "Gateway Address is a required argument", 0);
-  LOG ("Provided Gateway Address is \"" << dev << "\"");
-
-  //
-  // We have got to be able to assign an IP address to the tap device we are
-  // allocating.  This address is allocated in the simulation and assigned to
-  // the tap bridge.  This address is given in ip.
-  //
-  ABORT_IF (ip == NULL, "IP Address is a required argument", 0);
-  LOG ("Provided IP Address is \"" << ip << "\"");
-
-  //
-  // We have got to be able to assign a Mac address to the tap device we are
-  // allocating.  This address is allocated in the simulation and assigned to
-  // the bridged device.  This allows packets addressed to the bridged device
-  // to appear in the Linux host as if they were received there.
-  //
-  ABORT_IF (mac == NULL, "MAC Address is a required argument", 0);
-  LOG ("Provided MAC Address is \"" << mac << "\"");
-
-  //
-  // We have got to be able to assign a net mask to the tap device we are
-  // allocating.  This mask is allocated in the simulation and given to
-  // the bridged device.  
-  //
-  ABORT_IF (netmask == NULL, "Net Mask is a required argument", 0);
-  LOG ("Provided Net Mask is \"" << netmask << "\"");
-
-  //
-  // This program is spawned by a tap bridge running in a simulation.  It
-  // wants to create a socket as described below.  We are going to do the
-  // work here since we're running suid root.  Once we create the socket,
-  // we have to send it back to the tap bridge.  We do that over a Unix
-  // (local interprocess) socket.  The tap bridge created a socket to 
-  // listen for our response on, and it is expected to have encoded the address
-  // information as a string and to have passed that string as an argument to
-  // us.  We see it here as the "path" string.  We can't do anything useful 
-  // unless we have that string.
-  //
-  ABORT_IF (path == NULL, "path is a required argument", 0);
-  LOG ("Provided path is \"" << path << "\"");
-
-  //
-  // The whole reason for all of the hoops we went through to call out to this
-  // program will pay off here.  We created this program to run as suid root
-  // in order to keep the main simulation program from having to be run with
-  // root privileges.  We need root privileges to be able to futz with the 
-  // Tap device underlying all of this.  So all of these hoops are to allow 
-  // us to exeucte the following code:
-  //
-  LOG ("Creating Tap");
-  int sock = CreateTap (dev, gw, ip, mac, netmask);
-  ABORT_IF (sock == -1, "main(): Unable to create tap socket", 1);
-
-  //
-  // Send the socket back to the tap net device so it can go about its business
-  //
-  SendSocket (path, sock);
-
-  return 0;
-}