equal
deleted
inserted
replaced
351 * |
351 * |
352 * Complete formula for the path loss in dB: |
352 * Complete formula for the path loss in dB: |
353 * |
353 * |
354 * \f[\displaystyle L = |
354 * \f[\displaystyle L = |
355 \begin{cases} |
355 \begin{cases} |
356 0 & d < d_0 \ \ |
356 0 & d < d_0 \\ |
357 L_0 + 10 \cdot n_0 \log_{10}(\frac{d}{d_0}) & d_0 \leq d < d_1 \ \ |
357 L_0 + 10 \cdot n_0 \log_{10}(\frac{d}{d_0}) & d_0 \leq d < d_1 \\ |
358 L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d}{d_1}) & d_1 \leq d < d_2 \ \ |
358 L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d}{d_1}) & d_1 \leq d < d_2 \\ |
359 L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d_2}{d_1}) + 10 \cdot n_2 \log_{10}(\frac{d}{d_2})& d_2 \leq d |
359 L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d_2}{d_1}) + 10 \cdot n_2 \log_{10}(\frac{d}{d_2})& d_2 \leq d |
360 \end{cases}\f] |
360 \end{cases}\f] |
361 * |
361 * |
362 * where: |
362 * where: |
363 * - \f$ L \f$ : resulting path loss (dB) |
363 * - \f$ L \f$ : resulting path loss (dB) |