include/linux/pagemap.h
changeset 0 aa628870c1d3
child 2 d1f6d8b6f81c
equal deleted inserted replaced
-1:000000000000 0:aa628870c1d3
       
     1 #ifndef _LINUX_PAGEMAP_H
       
     2 #define _LINUX_PAGEMAP_H
       
     3 
       
     4 /*
       
     5  * Copyright 1995 Linus Torvalds
       
     6  */
       
     7 #include <linux/mm.h>
       
     8 #include <linux/fs.h>
       
     9 #include <linux/list.h>
       
    10 #include <linux/highmem.h>
       
    11 #include <linux/compiler.h>
       
    12 #include <asm/uaccess.h>
       
    13 #include <linux/gfp.h>
       
    14 #include <linux/bitops.h>
       
    15 #include <linux/hardirq.h> /* for in_interrupt() */
       
    16 
       
    17 /*
       
    18  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
       
    19  * allocation mode flags.
       
    20  */
       
    21 #define	AS_EIO		(__GFP_BITS_SHIFT + 0)	/* IO error on async write */
       
    22 #define AS_ENOSPC	(__GFP_BITS_SHIFT + 1)	/* ENOSPC on async write */
       
    23 #define AS_MM_ALL_LOCKS	(__GFP_BITS_SHIFT + 2)	/* under mm_take_all_locks() */
       
    24 
       
    25 static inline void mapping_set_error(struct address_space *mapping, int error)
       
    26 {
       
    27 	if (unlikely(error)) {
       
    28 		if (error == -ENOSPC)
       
    29 			set_bit(AS_ENOSPC, &mapping->flags);
       
    30 		else
       
    31 			set_bit(AS_EIO, &mapping->flags);
       
    32 	}
       
    33 }
       
    34 
       
    35 #ifdef CONFIG_UNEVICTABLE_LRU
       
    36 #define AS_UNEVICTABLE	(__GFP_BITS_SHIFT + 2)	/* e.g., ramdisk, SHM_LOCK */
       
    37 
       
    38 static inline void mapping_set_unevictable(struct address_space *mapping)
       
    39 {
       
    40 	set_bit(AS_UNEVICTABLE, &mapping->flags);
       
    41 }
       
    42 
       
    43 static inline void mapping_clear_unevictable(struct address_space *mapping)
       
    44 {
       
    45 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
       
    46 }
       
    47 
       
    48 static inline int mapping_unevictable(struct address_space *mapping)
       
    49 {
       
    50 	if (likely(mapping))
       
    51 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
       
    52 	return !!mapping;
       
    53 }
       
    54 #else
       
    55 static inline void mapping_set_unevictable(struct address_space *mapping) { }
       
    56 static inline void mapping_clear_unevictable(struct address_space *mapping) { }
       
    57 static inline int mapping_unevictable(struct address_space *mapping)
       
    58 {
       
    59 	return 0;
       
    60 }
       
    61 #endif
       
    62 
       
    63 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
       
    64 {
       
    65 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
       
    66 }
       
    67 
       
    68 /*
       
    69  * This is non-atomic.  Only to be used before the mapping is activated.
       
    70  * Probably needs a barrier...
       
    71  */
       
    72 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
       
    73 {
       
    74 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
       
    75 				(__force unsigned long)mask;
       
    76 }
       
    77 
       
    78 /*
       
    79  * The page cache can done in larger chunks than
       
    80  * one page, because it allows for more efficient
       
    81  * throughput (it can then be mapped into user
       
    82  * space in smaller chunks for same flexibility).
       
    83  *
       
    84  * Or rather, it _will_ be done in larger chunks.
       
    85  */
       
    86 #define PAGE_CACHE_SHIFT	PAGE_SHIFT
       
    87 #define PAGE_CACHE_SIZE		PAGE_SIZE
       
    88 #define PAGE_CACHE_MASK		PAGE_MASK
       
    89 #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
       
    90 
       
    91 #define page_cache_get(page)		get_page(page)
       
    92 #define page_cache_release(page)	put_page(page)
       
    93 void release_pages(struct page **pages, int nr, int cold);
       
    94 
       
    95 /*
       
    96  * speculatively take a reference to a page.
       
    97  * If the page is free (_count == 0), then _count is untouched, and 0
       
    98  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
       
    99  *
       
   100  * This function must be called inside the same rcu_read_lock() section as has
       
   101  * been used to lookup the page in the pagecache radix-tree (or page table):
       
   102  * this allows allocators to use a synchronize_rcu() to stabilize _count.
       
   103  *
       
   104  * Unless an RCU grace period has passed, the count of all pages coming out
       
   105  * of the allocator must be considered unstable. page_count may return higher
       
   106  * than expected, and put_page must be able to do the right thing when the
       
   107  * page has been finished with, no matter what it is subsequently allocated
       
   108  * for (because put_page is what is used here to drop an invalid speculative
       
   109  * reference).
       
   110  *
       
   111  * This is the interesting part of the lockless pagecache (and lockless
       
   112  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
       
   113  * has the following pattern:
       
   114  * 1. find page in radix tree
       
   115  * 2. conditionally increment refcount
       
   116  * 3. check the page is still in pagecache (if no, goto 1)
       
   117  *
       
   118  * Remove-side that cares about stability of _count (eg. reclaim) has the
       
   119  * following (with tree_lock held for write):
       
   120  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
       
   121  * B. remove page from pagecache
       
   122  * C. free the page
       
   123  *
       
   124  * There are 2 critical interleavings that matter:
       
   125  * - 2 runs before A: in this case, A sees elevated refcount and bails out
       
   126  * - A runs before 2: in this case, 2 sees zero refcount and retries;
       
   127  *   subsequently, B will complete and 1 will find no page, causing the
       
   128  *   lookup to return NULL.
       
   129  *
       
   130  * It is possible that between 1 and 2, the page is removed then the exact same
       
   131  * page is inserted into the same position in pagecache. That's OK: the
       
   132  * old find_get_page using tree_lock could equally have run before or after
       
   133  * such a re-insertion, depending on order that locks are granted.
       
   134  *
       
   135  * Lookups racing against pagecache insertion isn't a big problem: either 1
       
   136  * will find the page or it will not. Likewise, the old find_get_page could run
       
   137  * either before the insertion or afterwards, depending on timing.
       
   138  */
       
   139 static inline int page_cache_get_speculative(struct page *page)
       
   140 {
       
   141 	VM_BUG_ON(in_interrupt());
       
   142 
       
   143 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
       
   144 # ifdef CONFIG_PREEMPT
       
   145 	VM_BUG_ON(!in_atomic());
       
   146 # endif
       
   147 	/*
       
   148 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
       
   149 	 * this for us.
       
   150 	 *
       
   151 	 * Pagecache won't be truncated from interrupt context, so if we have
       
   152 	 * found a page in the radix tree here, we have pinned its refcount by
       
   153 	 * disabling preempt, and hence no need for the "speculative get" that
       
   154 	 * SMP requires.
       
   155 	 */
       
   156 	VM_BUG_ON(page_count(page) == 0);
       
   157 	atomic_inc(&page->_count);
       
   158 
       
   159 #else
       
   160 	if (unlikely(!get_page_unless_zero(page))) {
       
   161 		/*
       
   162 		 * Either the page has been freed, or will be freed.
       
   163 		 * In either case, retry here and the caller should
       
   164 		 * do the right thing (see comments above).
       
   165 		 */
       
   166 		return 0;
       
   167 	}
       
   168 #endif
       
   169 	VM_BUG_ON(PageTail(page));
       
   170 
       
   171 	return 1;
       
   172 }
       
   173 
       
   174 /*
       
   175  * Same as above, but add instead of inc (could just be merged)
       
   176  */
       
   177 static inline int page_cache_add_speculative(struct page *page, int count)
       
   178 {
       
   179 	VM_BUG_ON(in_interrupt());
       
   180 
       
   181 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
       
   182 # ifdef CONFIG_PREEMPT
       
   183 	VM_BUG_ON(!in_atomic());
       
   184 # endif
       
   185 	VM_BUG_ON(page_count(page) == 0);
       
   186 	atomic_add(count, &page->_count);
       
   187 
       
   188 #else
       
   189 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
       
   190 		return 0;
       
   191 #endif
       
   192 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
       
   193 
       
   194 	return 1;
       
   195 }
       
   196 
       
   197 static inline int page_freeze_refs(struct page *page, int count)
       
   198 {
       
   199 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
       
   200 }
       
   201 
       
   202 static inline void page_unfreeze_refs(struct page *page, int count)
       
   203 {
       
   204 	VM_BUG_ON(page_count(page) != 0);
       
   205 	VM_BUG_ON(count == 0);
       
   206 
       
   207 	atomic_set(&page->_count, count);
       
   208 }
       
   209 
       
   210 #ifdef CONFIG_NUMA
       
   211 extern struct page *__page_cache_alloc(gfp_t gfp);
       
   212 #else
       
   213 static inline struct page *__page_cache_alloc(gfp_t gfp)
       
   214 {
       
   215 	return alloc_pages(gfp, 0);
       
   216 }
       
   217 #endif
       
   218 
       
   219 static inline struct page *page_cache_alloc(struct address_space *x)
       
   220 {
       
   221 	return __page_cache_alloc(mapping_gfp_mask(x));
       
   222 }
       
   223 
       
   224 static inline struct page *page_cache_alloc_cold(struct address_space *x)
       
   225 {
       
   226 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
       
   227 }
       
   228 
       
   229 typedef int filler_t(void *, struct page *);
       
   230 
       
   231 extern struct page * find_get_page(struct address_space *mapping,
       
   232 				pgoff_t index);
       
   233 extern struct page * find_lock_page(struct address_space *mapping,
       
   234 				pgoff_t index);
       
   235 extern struct page * find_or_create_page(struct address_space *mapping,
       
   236 				pgoff_t index, gfp_t gfp_mask);
       
   237 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
       
   238 			unsigned int nr_pages, struct page **pages);
       
   239 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
       
   240 			       unsigned int nr_pages, struct page **pages);
       
   241 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
       
   242 			int tag, unsigned int nr_pages, struct page **pages);
       
   243 
       
   244 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
       
   245 
       
   246 /*
       
   247  * Returns locked page at given index in given cache, creating it if needed.
       
   248  */
       
   249 static inline struct page *grab_cache_page(struct address_space *mapping,
       
   250 								pgoff_t index)
       
   251 {
       
   252 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
       
   253 }
       
   254 
       
   255 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
       
   256 				pgoff_t index);
       
   257 extern struct page * read_cache_page_async(struct address_space *mapping,
       
   258 				pgoff_t index, filler_t *filler,
       
   259 				void *data);
       
   260 extern struct page * read_cache_page(struct address_space *mapping,
       
   261 				pgoff_t index, filler_t *filler,
       
   262 				void *data);
       
   263 extern int read_cache_pages(struct address_space *mapping,
       
   264 		struct list_head *pages, filler_t *filler, void *data);
       
   265 
       
   266 static inline struct page *read_mapping_page_async(
       
   267 						struct address_space *mapping,
       
   268 						     pgoff_t index, void *data)
       
   269 {
       
   270 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
       
   271 	return read_cache_page_async(mapping, index, filler, data);
       
   272 }
       
   273 
       
   274 static inline struct page *read_mapping_page(struct address_space *mapping,
       
   275 					     pgoff_t index, void *data)
       
   276 {
       
   277 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
       
   278 	return read_cache_page(mapping, index, filler, data);
       
   279 }
       
   280 
       
   281 /*
       
   282  * Return byte-offset into filesystem object for page.
       
   283  */
       
   284 static inline loff_t page_offset(struct page *page)
       
   285 {
       
   286 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
       
   287 }
       
   288 
       
   289 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
       
   290 					unsigned long address)
       
   291 {
       
   292 	pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
       
   293 	pgoff += vma->vm_pgoff;
       
   294 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
       
   295 }
       
   296 
       
   297 extern void __lock_page(struct page *page);
       
   298 extern int __lock_page_killable(struct page *page);
       
   299 extern void __lock_page_nosync(struct page *page);
       
   300 extern void unlock_page(struct page *page);
       
   301 
       
   302 static inline void __set_page_locked(struct page *page)
       
   303 {
       
   304 	__set_bit(PG_locked, &page->flags);
       
   305 }
       
   306 
       
   307 static inline void __clear_page_locked(struct page *page)
       
   308 {
       
   309 	__clear_bit(PG_locked, &page->flags);
       
   310 }
       
   311 
       
   312 static inline int trylock_page(struct page *page)
       
   313 {
       
   314 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
       
   315 }
       
   316 
       
   317 /*
       
   318  * lock_page may only be called if we have the page's inode pinned.
       
   319  */
       
   320 static inline void lock_page(struct page *page)
       
   321 {
       
   322 	might_sleep();
       
   323 	if (!trylock_page(page))
       
   324 		__lock_page(page);
       
   325 }
       
   326 
       
   327 /*
       
   328  * lock_page_killable is like lock_page but can be interrupted by fatal
       
   329  * signals.  It returns 0 if it locked the page and -EINTR if it was
       
   330  * killed while waiting.
       
   331  */
       
   332 static inline int lock_page_killable(struct page *page)
       
   333 {
       
   334 	might_sleep();
       
   335 	if (!trylock_page(page))
       
   336 		return __lock_page_killable(page);
       
   337 	return 0;
       
   338 }
       
   339 
       
   340 /*
       
   341  * lock_page_nosync should only be used if we can't pin the page's inode.
       
   342  * Doesn't play quite so well with block device plugging.
       
   343  */
       
   344 static inline void lock_page_nosync(struct page *page)
       
   345 {
       
   346 	might_sleep();
       
   347 	if (!trylock_page(page))
       
   348 		__lock_page_nosync(page);
       
   349 }
       
   350 	
       
   351 /*
       
   352  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
       
   353  * Never use this directly!
       
   354  */
       
   355 extern void wait_on_page_bit(struct page *page, int bit_nr);
       
   356 
       
   357 /* 
       
   358  * Wait for a page to be unlocked.
       
   359  *
       
   360  * This must be called with the caller "holding" the page,
       
   361  * ie with increased "page->count" so that the page won't
       
   362  * go away during the wait..
       
   363  */
       
   364 static inline void wait_on_page_locked(struct page *page)
       
   365 {
       
   366 	if (PageLocked(page))
       
   367 		wait_on_page_bit(page, PG_locked);
       
   368 }
       
   369 
       
   370 /* 
       
   371  * Wait for a page to complete writeback
       
   372  */
       
   373 static inline void wait_on_page_writeback(struct page *page)
       
   374 {
       
   375 	if (PageWriteback(page))
       
   376 		wait_on_page_bit(page, PG_writeback);
       
   377 }
       
   378 
       
   379 extern void end_page_writeback(struct page *page);
       
   380 
       
   381 /*
       
   382  * Fault a userspace page into pagetables.  Return non-zero on a fault.
       
   383  *
       
   384  * This assumes that two userspace pages are always sufficient.  That's
       
   385  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
       
   386  */
       
   387 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
       
   388 {
       
   389 	int ret;
       
   390 
       
   391 	if (unlikely(size == 0))
       
   392 		return 0;
       
   393 
       
   394 	/*
       
   395 	 * Writing zeroes into userspace here is OK, because we know that if
       
   396 	 * the zero gets there, we'll be overwriting it.
       
   397 	 */
       
   398 	ret = __put_user(0, uaddr);
       
   399 	if (ret == 0) {
       
   400 		char __user *end = uaddr + size - 1;
       
   401 
       
   402 		/*
       
   403 		 * If the page was already mapped, this will get a cache miss
       
   404 		 * for sure, so try to avoid doing it.
       
   405 		 */
       
   406 		if (((unsigned long)uaddr & PAGE_MASK) !=
       
   407 				((unsigned long)end & PAGE_MASK))
       
   408 		 	ret = __put_user(0, end);
       
   409 	}
       
   410 	return ret;
       
   411 }
       
   412 
       
   413 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
       
   414 {
       
   415 	volatile char c;
       
   416 	int ret;
       
   417 
       
   418 	if (unlikely(size == 0))
       
   419 		return 0;
       
   420 
       
   421 	ret = __get_user(c, uaddr);
       
   422 	if (ret == 0) {
       
   423 		const char __user *end = uaddr + size - 1;
       
   424 
       
   425 		if (((unsigned long)uaddr & PAGE_MASK) !=
       
   426 				((unsigned long)end & PAGE_MASK))
       
   427 		 	ret = __get_user(c, end);
       
   428 	}
       
   429 	return ret;
       
   430 }
       
   431 
       
   432 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
       
   433 				pgoff_t index, gfp_t gfp_mask);
       
   434 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
       
   435 				pgoff_t index, gfp_t gfp_mask);
       
   436 extern void remove_from_page_cache(struct page *page);
       
   437 extern void __remove_from_page_cache(struct page *page);
       
   438 
       
   439 /*
       
   440  * Like add_to_page_cache_locked, but used to add newly allocated pages:
       
   441  * the page is new, so we can just run __set_page_locked() against it.
       
   442  */
       
   443 static inline int add_to_page_cache(struct page *page,
       
   444 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
       
   445 {
       
   446 	int error;
       
   447 
       
   448 	__set_page_locked(page);
       
   449 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
       
   450 	if (unlikely(error))
       
   451 		__clear_page_locked(page);
       
   452 	return error;
       
   453 }
       
   454 
       
   455 #endif /* _LINUX_PAGEMAP_H */