src/propagation/examples/jakes-propagation-model-example.cc
author Tom Henderson <tomh@tomh.org>
Sun, 09 Dec 2018 20:56:55 -0800
changeset 13896 f28ea3963182
parent 9063 32755d0516f4
permissions -rw-r--r--
bindings: Rescan all APIs

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2012 Telum (www.telum.ru)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Author: Kirill Andreev <andreev@telum.ru>
 */
#include "ns3/core-module.h"
#include "ns3/mobility-module.h"
#include "ns3/jakes-propagation-loss-model.h"
#include <vector>
#include <cmath>

using namespace ns3;
/**
 * \ingroup propagation
 * \brief Constructs a JakesPropagationlossModel and print the loss value as a function of time into std::cout.
 * Distribution and correlation statistics is compared woth a theoretical ones using R package (http://www.r-project.org/).
 * Scripts are presented within comments.
 */
class JakesPropagationExample
{
public:
  JakesPropagationExample ();
  ~JakesPropagationExample ();
private:
  Ptr<PropagationLossModel> m_loss;
  Ptr<MobilityModel> m_firstMobility;
  Ptr<MobilityModel> m_secondMobility;
  Time m_step;
  EventId m_nextEvent;
  void Next ();

};

JakesPropagationExample::JakesPropagationExample () :
  m_step (Seconds (0.0002)) //1/5000 part of the second
{
  m_loss = CreateObject<JakesPropagationLossModel> ();
  m_firstMobility = CreateObject<ConstantPositionMobilityModel> ();
  m_secondMobility = CreateObject<ConstantPositionMobilityModel> ();
  m_firstMobility->SetPosition (Vector (0, 0, 0));
  m_secondMobility->SetPosition (Vector (10, 0, 0));
  m_nextEvent = Simulator::Schedule (m_step, &JakesPropagationExample::Next, this);
}

JakesPropagationExample::~JakesPropagationExample ()
{
}

void JakesPropagationExample::Next ()
{
  m_nextEvent = Simulator::Schedule (m_step, &JakesPropagationExample::Next, this);
  std::cout << Simulator::Now ().GetMilliSeconds () << " " << m_loss->CalcRxPower (0, m_firstMobility, m_secondMobility) << std::endl;
}

int main (int argc, char *argv[])
{
  Config::SetDefault ("ns3::JakesProcess::NumberOfOscillators", UintegerValue (100));
  CommandLine cmd;
  cmd.Parse (argc, argv);
  JakesPropagationExample example;
  Simulator::Stop (Seconds (1000));
  Simulator::Run ();
  Simulator::Destroy ();
  /*
   * R script for plotting a distribution:
   data<-read.table ("data")
   rayleigh<-(rnorm(1e6)^2+rnorm(1e6)^2)/2
   qqplot(10*log10(rayleigh), data$V2, main="QQ-plot for improved Jakes model", xlab="Reference Rayleigh distribution [power, dB]", ylab="Sum-of-sinusoids distribution [power, dB]", xlim=c(-45, 10), ylim=c(-45, 10))
   lines (c(-50, 50), c(-50, 50))
   abline (v=-50:50*2, h=-50:50*2, col="light grey")
   */

  /*
   * R script to plot autocorrelation function:
   # Read amplitude distribution:
   data<-10^(read.table ("data")$V2/20)
   x<-1:2000/10
   acf (data, lag.max=200, main="Autocorrelation function of the improved Jakes model", xlab="Time x200 microseconds ", ylab="Autocorrelation")
   # If we have a delta T = 1/5000 part of the second and doppler freq = 80 Hz
   lines (x, besselJ(x*80*2*pi/5000, 0)^2)
   abline (h=0:10/10, col="light grey")
   */
  return 0;
}