src/propagation/examples/jakes-propagation-model-example.cc
author John Abraham <john.abraham.in@gmail.com>
Mon, 09 Oct 2017 09:45:32 -0700
changeset 13111 68978885b6fc
parent 8786 8f366d5eee06
permissions -rw-r--r--
NetAnim: change documentation to Qt5
     1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
     2 /*
     3  * Copyright (c) 2012 Telum (www.telum.ru)
     4  *
     5  * This program is free software; you can redistribute it and/or modify
     6  * it under the terms of the GNU General Public License version 2 as
     7  * published by the Free Software Foundation;
     8  *
     9  * This program is distributed in the hope that it will be useful,
    10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    12  * GNU General Public License for more details.
    13  *
    14  * You should have received a copy of the GNU General Public License
    15  * along with this program; if not, write to the Free Software
    16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    17  *
    18  * Author: Kirill Andreev <andreev@telum.ru>
    19  */
    20 #include "ns3/core-module.h"
    21 #include "ns3/mobility-module.h"
    22 #include "ns3/jakes-propagation-loss-model.h"
    23 #include <vector>
    24 #include <cmath>
    25 
    26 using namespace ns3;
    27 /**
    28  * \ingroup propagation
    29  * \brief Constructs a JakesPropagationlossModel and print the loss value as a function of time into std::cout.
    30  * Distribution and correlation statistics is compared woth a theoretical ones using R package (http://www.r-project.org/).
    31  * Scripts are presented within comments.
    32  */
    33 class JakesPropagationExample
    34 {
    35 public:
    36   JakesPropagationExample ();
    37   ~JakesPropagationExample ();
    38 private:
    39   Ptr<PropagationLossModel> m_loss;
    40   Ptr<MobilityModel> m_firstMobility;
    41   Ptr<MobilityModel> m_secondMobility;
    42   Time m_step;
    43   EventId m_nextEvent;
    44   void Next ();
    45 
    46 };
    47 
    48 JakesPropagationExample::JakesPropagationExample () :
    49   m_step (Seconds (0.0002)) //1/5000 part of the second
    50 {
    51   m_loss = CreateObject<JakesPropagationLossModel> ();
    52   m_firstMobility = CreateObject<ConstantPositionMobilityModel> ();
    53   m_secondMobility = CreateObject<ConstantPositionMobilityModel> ();
    54   m_firstMobility->SetPosition (Vector (0, 0, 0));
    55   m_secondMobility->SetPosition (Vector (10, 0, 0));
    56   m_nextEvent = Simulator::Schedule (m_step, &JakesPropagationExample::Next, this);
    57 }
    58 
    59 JakesPropagationExample::~JakesPropagationExample ()
    60 {
    61 }
    62 
    63 void JakesPropagationExample::Next ()
    64 {
    65   m_nextEvent = Simulator::Schedule (m_step, &JakesPropagationExample::Next, this);
    66   std::cout << Simulator::Now ().GetMilliSeconds () << " " << m_loss->CalcRxPower (0, m_firstMobility, m_secondMobility) << std::endl;
    67 }
    68 
    69 int main (int argc, char *argv[])
    70 {
    71   Config::SetDefault ("ns3::JakesProcess::NumberOfOscillators", UintegerValue (100));
    72   CommandLine cmd;
    73   cmd.Parse (argc, argv);
    74   JakesPropagationExample example;
    75   Simulator::Stop (Seconds (1000));
    76   Simulator::Run ();
    77   Simulator::Destroy ();
    78   /*
    79    * R script for plotting a distribution:
    80    data<-read.table ("data")
    81    rayleigh<-(rnorm(1e6)^2+rnorm(1e6)^2)/2
    82    qqplot(10*log10(rayleigh), data$V2, main="QQ-plot for improved Jakes model", xlab="Reference Rayleigh distribution [power, dB]", ylab="Sum-of-sinusoids distribution [power, dB]", xlim=c(-45, 10), ylim=c(-45, 10))
    83    lines (c(-50, 50), c(-50, 50))
    84    abline (v=-50:50*2, h=-50:50*2, col="light grey")
    85    */
    86 
    87   /*
    88    * R script to plot autocorrelation function:
    89    # Read amplitude distribution:
    90    data<-10^(read.table ("data")$V2/20)
    91    x<-1:2000/10
    92    acf (data, lag.max=200, main="Autocorrelation function of the improved Jakes model", xlab="Time x200 microseconds ", ylab="Autocorrelation")
    93    # If we have a delta T = 1/5000 part of the second and doppler freq = 80 Hz
    94    lines (x, besselJ(x*80*2*pi/5000, 0)^2)
    95    abline (h=0:10/10, col="light grey")
    96    */
    97   return 0;
    98 }